摘要:近年来, 将公共安全数据转换为图的形式, 通过图神经网络(GNN)构造节点表示应用于下游任务的方法, 充分利用了公共安全数据的实体与关联信息, 取得了较好的效果. 为了提高模型的有效性, 需要大量的高质量数据, 但是高质量的数据通常归属于政府、公司和组织, 很难通过数据集中的方式使模型学习到有效的事件检测模型.由于各数据拥有方的关注主题与收集时间不同, 数据之间存在Non-IID的问题. 传统的假设一个全局模型可以适合所有客户端的方法难以解决此类问题. 提出了基于强化联邦图神经网络的个性化公共安全突发事件检测方法PPSED, 各客户端采用多方协作的方式训练个性化的模型来解决本地的突发事件检测任务. 设计了联邦公共安全突发事件检测模型的本地训练与梯度量化模块,采用基于图采样的minibatch机制的GraphSage构造公共安全突发事件检测本地模型, 以减小数据Non-IID的影响, 采用梯度量化方法减小梯度通信的消耗. 设计了基于随机图嵌入的客户端状态感知模块, 在保护隐私的同时, 更好地保留客户端模型有价值的梯度信息. 设计了强化联邦图神经网络的个性化梯度聚合与量化策略, 采用DDPG拟合个性化联邦学习梯度聚合加权策略, 并根据权重决定是否对梯度进行量化, 对模型的性能与通信压力进行平衡. 通过在微博平台收集的公共安全数据集和3个公开的图数据集进行了大量的实验, 实验结果表明了所提方法的有效性.