半监督场景下多视角信息交互的图卷积神经网络
作者:
作者简介:

王悦天(2000-), 男, 硕士生, 主要研究领域为深度学习, 图表示学习, 计算机视觉. ;傅司超(1995-), 男, 博士生, 主要研究领域为流形学习, 图表示学习. ;彭勤牧(1985-), 男, 博士, 副教授, 主要研究领域为视觉计算, 机器学习, 医学图像分析. ;邹斌(1969-), 男, 博士, 教授, 博士生导师, 主要研究领域为统计学习理论, 机器学习. ;荆晓远(1971-), 男, 博士, 教授, 博士生导师, CCF专业会员, 主要研究领域为机器学习, 人工智能, 软件工程. ;尤新革(1969-), 男, 博士, 教授, 博士生导师, CCF高级会员, 主要研究领域为模式识别, 图像与信号处理, 计算机视觉, 生物特征识别与智能防伪.

通讯作者:

傅司超, E-mail: fusichao_hust@hust.edu.cn;尤新革, E-mail: youxg@hust.edu.cn

基金项目:

国家重点研发计划 (2022YFC3301004); 国家自然科学基金 (62172177); 中央高校基本科研业务费专项资金 (2022JYCXJJ034)


Multi-view Interaction Graph Convolutional Network for Semi-supervised Classification
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在当前数据来源多样化且人工标记难度大的现实生活中, 半监督场景下多视角数据的分类算法在各个领域中都具有重要的研究意义. 近年来, 基于图神经网络的半监督多视角分类算法研究已经取得了很大的进展. 但是现有的图神经网络算法大多是在分类阶段进行多视角互补信息的融合, 反而忽略了训练阶段同一样本不同视角间互补信息的交互. 针对上述问题, 提出半监督场景下多视角信息交互的图卷积神经网络算法MIGCN (multi-view interaction graph convolutional network). 该方法通过在不同视角上训练的图卷积层之间引入Transformer Encoder模块, 使得同一样本在训练阶段都可以通过注意力机制自适应的在不同视角间获取互补性信息, 进而加强自身的训练; 除此之外, 还通过引入一致性约束损失让不同视角最终特征表达的相似关系尽可能一样, 促使图卷积神经网络在分类阶段更加合理的利用多视角特征之间的一致性和互补性信息, 进一步提升多视角融合特征的鲁棒性. 最后, 在多个真实世界多视角数据集上的实验表明, 相比于基于图的半监督多视角分类模型, MIGCN可以更好地学习到多视角数据的本质特征, 进而提升半监督多视角分类的准确性.

    Abstract:

    In current real life where data sources are diverse, and manual labeling is difficult, semi-supervised multi-view classification algorithms have important research significance in various fields. In recent years, graph neural networks-based semi-supervised multi-view classification algorithms have achieved great progress. However, most of the existing graph neural networks carry out multi-view information fusion only in the classification stage, while neglecting the multi-view information interaction between the same sample during the training stage. To solve the above issue, this study proposes a model for semi-supervised classification, named multi-view interaction graph convolutional network (MIGCN). The Transformer Encoder module is introduced to the graph convolution layer trained on different views, which aims to adaptively acquire complementary information between different views for the same sample during the training stage. More importantly, the study introduces the consistency constraint loss to make the similar relationship of the final feature expressions of different views as similar as possible. This operation can make graph convolutional neural networks during the classification stage better utilize the consistency and complementarity information between different views reasonably, and then it can further improve the robust performance of the multi-view fusion feature. Extensive experiments on several real-world multi-view datasets demonstrate that compared with the graph-based semi-supervised multi-view classification model, MIGCN can better learn the essential features of multi-view data, thereby improving the accuracy of semi-supervised multi-view classification.

    参考文献
    [1] Yan XQ, Hu SZ, Mao YQ, Ye YD, Yu H. Deep multi-view learning methods: A review. Neurocomputing, 2021, 448: 106–129.
    [2] Sun SL. A survey of multi-view machine learning. Neural Computing and Applications, 2013, 23(7–8): 2031–2038.
    [3] Yang XL, Song ZX, King I, Xu ZL. A survey on deep semi-supervised learning. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(9): 8934–8954.
    [4] Jiang LK. Multi-view semi-supervised classification overview. In: Proc. of the 2nd Int’l Conf. on Artificial Intelligence and Information Systems. Chongqing: ACM, 2021. 1–7.
    [5] Liu WF, Ma XQ, Zhou YC, Tao DP, Cheng J. p-Laplacian regularization for scene recognition. IEEE Trans. on Cybernetics, 2018, 49(8): 2927–2940.
    [6] Xie Y, Zhang WS, Qu YY, Dai LQ, Tao DC. Hyper-Laplacian regularized multilinear multiview self-representations for clustering and semisupervised learning. IEEE Trans. on Cybernetics, 2020, 50(2): 572–586.
    [7] Zhang CQ, Fu HZ, Wang J, Li W, Cao XC, Hu QH. Tensorized multi-view subspace representation learning. Int’l Journal of Computer Vision, 2020, 128(8–9): 2344–2361.
    [8] Zhang CQ, Hu QH, Fu HZ, Zhu PF, Cao XC. Latent multi-view subspace clustering. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 4333–4341.
    [9] 李林珂, 康昭, 龙波. 基于黎曼流形的多视角谱聚类算法. 计算机工程, 2023, 49(1): 113–120, 129.
    Li LK, Kang Z, Long B. Riemannian manifold based multi-view spectral clustering algorithm. Computer Engineering, 2023, 49(1): 113–120, 129 (in Chinese with English abstract).
    [10] Liu J, Jiang Y, Li ZC, Zhou ZH, Lu HQ. Partially shared latent factor learning with multiview data. IEEE Trans. on Neural Networks and Learning Systems, 2015, 26(6): 1233–1246.
    [11] Chao GQ, Sun SL. Multi-kernel maximum entropy discrimination for multi-view learning. Intelligent Data Analysis, 2016, 20(3): 481–493.
    [12] Lanckriet GRG, Cristianini N, Bartlett P, Jordan MI. Learning the kernel matrix with semidefinite programming. The Journal of Machine Learning Research, 2004, 5: 27–72.
    [13] Wang Z, Chen SC. Multi-view kernel machine on single-view data. Neurocomputing, 2009, 72(10–12): 2444–2449.
    [14] Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proc. of the 11th Annual Conf. on Computational Learning Theory. Madison: ACM, 1998. 92–100.
    [15] Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training. In: Proc. of the 9th Int’l Conf. on Information and Knowledge Management. McLean: ACM, 2000. 86–93.
    [16] Niu XS, Han H, Shan SG, Chen XL. Multi-label co-regularization for semi-supervised facial action unit recognition. In: Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019. 82.
    [17] Yu SP, Krishnapuram B, Rosales R, et al. Bayesian co-training. In: Proc. of the 21st Annual Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2007. 1665–1672.
    [18] Wang W, Zhou ZH. A new analysis of Co-training. In: Proc. of the 27th Int’l Conf. on Int’l Conf. on Machine Learning. Haifa: Omnipress, 2010. 1135–1142.
    [19] Li S, Li WT, Wang W. Co-GCN for multi-view semi-supervised learning. In: Proc. of the 37th AAAI Conf. on Artificial Intelligence. Washington: AAAI Press, 2020. 4691–4698.
    [20] Cheng JF, Wang QQ, Tao ZQ, Xie DY, Gao QX. Multi-view attribute graph convolution networks for clustering. In: Proc. of the 29th Int’l Joint Conf. on Artificial Intelligence. Yokohama: IJCAI.org, 2021. 411.
    [21] Xie Y, Zhang YQ, Gong MG, Tang ZD, Han C. MGAT: Multi-view graph attention networks. Neural Networks, 2020, 132: 180–189.
    [22] Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans. on Neural Networks, 2009, 20(1): 61–80.
    [23] Wu ZH, Pan SR, Chen FW, Long GD, Zhang CQ, Yu PS. A comprehensive survey on graph neural networks. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32(1): 4–24.
    [24] Chen YS, Zhao X, Jia XP. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2381–2392.
    [25] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: Proc. of the 5th Int’l Conf. on Learning Representations. Toulon: OpenReview.net, 2017.
    [26] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In: Proc. of the 6th Int’l Conf. on Learning Representations. Vancouver: OpenReview.net, 2018.
    [27] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 1025–1035.
    [28] Chen J, Ma TF, Xiao C. FastGCN: Fast learning with graph convolutional networks via importance sampling. In: Proc. of the 6th Int’l Conf. on Learning Representations. Vancouver: OpenReview.net, 2018.
    [29] Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. In: Proc. of the 34th Int’l Conf. on Machine Learning. Sydney: JMLR.org, 2017. 1263–1272.
    [30] Fey M, Lenssen JE. Fast graph representation learning with PyTorch geometric. arXiv:1903.02428, 2019.
    [31] Zheng D, Wang MJ, Gan Q, Song X, Zhang Z, Karypis G. Scalable graph neural networks with deep graph library. In: Proc. of the 14th ACM Int’l Conf. on Web Search and Data Mining. ACM, 2021. 1141–1142.
    [32] 康昭, 刘亮, 韩蒙. 基于转换学习的半监督分类. 计算机研究与发展, 2023, 60(1): 103–111.
    Zhao K, Liu L, Han M. Semi-supervised classification based on transformed learning. Journal of Computer Research and Development, 2023, 60(1): 103–111 (in Chinese with English abstract).
    [33] Cai X, Nie FP, Cai WD, et al. Heterogeneous image features integration via multi-modal semi-supervised learning model. In: Proc. of the 2013 IEEE Int’l Conf. on Computer Vision. Sydney: IEEE, 2013. 1737–1744.
    [34] Karasuyama M, Mamitsuka H. Multiple graph label propagation by sparse integration. IEEE Trans. on Neural Networks and Learning Systems, 2013, 24(12): 1999–2012.
    [35] Nie FP, Li J, Li XL. Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification. In: Proc. of the 25th Int’l Joint Conf. on Artificial Intelligence. New York: AAAI Press, 2016. 1881–1887.
    [36] Xu C, Guan ZY, Zhao W, Niu YF, Wang Q, Wang ZH. Deep multi-view concept learning. In: Proc. of the 27th Int’l Joint Conf. on Artificial Intelligence. Stockholm: IJCAI.org, 2018. 2898–2904.
    [37] Nie FP, Cai GH, Li J, Li XL. Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans. on Image Processing, 2018, 27(3): 1501–1511.
    [38] Khan MR, Blumenstock JE. Multi-GCN: Graph convolutional networks for multi-view networks, with applications to global poverty. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI Press, 2019. 75.
    [39] Ma Y, Wang SH, Aggarwal CC, Yin D, Tang J. Multi-dimensional graph convolutional networks. In: Proc. of the 2019 SIAM Int’l Conf. on Data Mining. Calgary: SIAM, 2019. 657–665.
    [40] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai XH, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. In: Proc. of the 9th Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2021.
    [41] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [42] Loshchilov I, Hutter F. Decoupled weight decay regularization. In: Proc. of the 7th Int’l Conf. on Learning Representations. New Orleans: OpenReview.net, 2019.
    [43] Loshchilov I, Hutter F. SGDR: Stochastic gradient descent with warm restarts. In: Proc. of the 5th Int’l Conf. on Learning Representations. Toulon: OpenReview.net, 2017.
    [44] Tao H, Hou CP, Nie FP, Zhu JB, Yi DY. Scalable multi-view semi-supervised classification via adaptive regression. IEEE Trans. on Image Processing, 2017, 26(9): 4283–4296.
    [45] Huang AP, Wang Z, Zheng YN, Zhao TS, Lin CW. Embedding regularizer learning for multi-view semi-supervised classification. IEEE Trans. on Image Processing, 2021, 30: 6997–7011.
    [46] Jiang B, Chen S, Wang BB, Luo B. MGLNN: Semi-supervised learning via multiple graph cooperative learning neural networks. Neural Networks, 2022, 153: 204–214.
    [47] van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
    [48] Tang CX, Zhao YC, Wang GT, Luo C, Xie WX, Zeng WJ. Sparse MLP for image recognition: Is self-attention really necessary? In: Proc. of the 36th AAAI Conf. on Artificial Intelligence. Palo Alto: AAAI Press, 2022. 2344–2351.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王悦天,傅司超,彭勤牧,邹斌,荆晓远,尤新革.半监督场景下多视角信息交互的图卷积神经网络.软件学报,2024,35(11):5098-5115

复制
分享
文章指标
  • 点击次数:726
  • 下载次数: 2839
  • HTML阅读次数: 481
  • 引用次数: 0
历史
  • 收稿日期:2022-08-03
  • 最后修改日期:2022-11-16
  • 在线发布日期: 2023-11-29
  • 出版日期: 2024-11-06
文章二维码
您是第19795540位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号