面向时间感知的知识超图链接预测
作者:
作者简介:

陈子睿(1998-),男,博士,主要研究领域为知识表示学习,大型语言模型;张少伟(1996-),男,硕士,主要研究领域为知识表示学习,知识图谱构建;王鑫(1981-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为知识图谱数据管理,图数据库,大数据分布式处理;闫浩宇(1997-),男,硕士,主要研究领域为知识表示学习;王晨旭(1998-),男,硕士,CCF学生会员,主要研究领域为知识表示学习.

通讯作者:

王鑫,E-mail:wangx@tju.edu.cn

基金项目:

科技创新2030“新一代人工智能”重大专项(2020AAA0108504);国家自然科学基金(61972275)


Towards Time-aware Knowledge Hypergraph Link Prediction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    知识超图是一种使用多元关系表示现实世界的异构图,但无论在通用领域还是垂直领域,现有的知识超图普遍存在不完整的情况.因此,如何通过知识超图中已有的链接推理缺失的链接,是一个具有挑战性的问题.目前,大多数研究使用基于多元关系的知识表示学习方法完成知识超图的链接预测任务,但这些方法仅从时间未知的超边中学习实体与关系的嵌入向量,没有考虑时间因素对事实动态演变的影响,导致在动态环境中的预测性能较差.首先,根据首次所提出的时序知识超图定义,提出时序知识超图链接预测模型,同时从实体角色、位置和时序超边的时间戳中学习实体的静态表征和动态表征,以一定比例融合后作为实体嵌入向量用于链接预测任务,实现对超边时序信息的充分利用.同时,从理论上证明模型具有完全表达性和线性空间复杂度.此外,通过上市公司的公开经营数据构建时序知识超图数据集CB67,并在该数据集上进行了大量实验评估.实验结果表明,模型能够在时序知识超图数据集上有效地执行链接预测任务.

    Abstract:

    A knowledge hypergraph is a form of a heterogeneous graph that represents the real world through n-ary relations. However, both in general and specific domains, existing knowledge hypergraphs often suffer from incompleteness. Therefore, it is a challenging task to reason the missing links through the existing links in the knowledge hypergraph. Currently, most research employs knowledge representation learning methods based on n-ary relations to carry out link prediction tasks in knowledge hypergraphs. However, these methods only learn embedding vectors of entities and relations from hyperedges with unknown temporal information, neglecting the impact of temporal factors on the dynamic evolution of facts, resulting in poor predictive performance in dynamic environments. Firstly, based on the definition of temporal knowledge hypergraph that proposed by this study for the first time, a link prediction model is proposed for temporal knowledge hypergraphs. Simultaneously, static and dynamic representations of entities are learnt from their roles, positions, and timestamps of temporal hyperedges, which are merged in a certain proportion and utilized as final entity embedding vectors for link prediction tasks to realize the full exploitation of hyperedge temporal information. At the same time, it is theoretically proved that the proposed model is fully expressive and has linear space complexity. In addition, a temporal knowledge hypergraph dataset CB67 is constructed from the public business data of listed companies, and a large number of experimental evaluations are conducted on this dataset. The experimental results show that the proposed model can effectively perform the link prediction task on the temporal knowledge hypergraph dataset.

    参考文献
    [1] Wang X, Zou L, Wang CK, Peng P, Feng ZY. Research on knowledge graph data management: A survey. Ruan Jian Xue Bao/ Journal of Software, 2019, 30(7): 2139-2174(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5841.htm [doi: 10.13328/j.cnki.jos.005841]
    [2] Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: A collaboratively created graph database for structuring human knowledge. In: Proc. of the 2008 ACM SIGMOD Int’l Conf. on Management of Data. New York: Association for Computing Machinery, 2008. 1247-1250.
    [3] Wen J, Li J, Mao Y, Chen S, Zhang R. On the representation and embedding of knowledge bases beyond binary relations. arXiv:1604.08642, 2016.
    [4] Fatemi B, Taslakian P, Vazquez D, Poole D. Knowledge hypergraphs: Prediction beyond binary relations. arXiv:1906.00137, 2019.
    [5] Ernst P, Siu A, Weikum G. Highlife: Higher-arity fact harvesting. In: Proc. of the 2018 World Wide Web Conf. Int’l World Wide Web Conf. Steering Committee, 2018. 1013-1022.
    [6] Zhang F, Yuan NJ, Lian D, Xie X, Ma WY. Collaborative knowledge base embedding for recommender systems. In: Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016. 353-362.
    [7] Lukovnikov D, Fischer A, Lehmann J, Auer S. Neural network-based question answering over knowledge graphs on word and character level. In: Proc. of the 26th Int’l Conf. on World Wide Web. Int’l World Wide Web Conf. Steering Committee, 2017. 1211-1220.
    [8] Hou ZN, Jin XL, Chen JY, Guan SP, Wang YZ, Cheng XQ. Survey of interpretable reasoning on knowledge graphs. Ruan Jian Xue Bao/Journal of Software, 2022, 33(12): 4644-4667(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6522.htm [doi: 10.13328/j.cnki.jos.006522]
    [9] Yang DH, He T, Wang HZ, Wang JB. Survey on knowledge graph embedding learning. Ruan Jian Xue Bao/Journal of Software, 2022, 33(9): 3370-3390(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6426.htm [doi: 10.13328/j.cnki.jos. 006426]
    [10] Richardson M, Domingos P. Markov logic networks. Machine Learning, 2006, 62(1): 107-136.
    [11] Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: Proc. of the AAAI Conf. on Artificial Intelligence. Palo Alto: AAAI, 2014. 1112-1119.
    [12] Liu Y, Yao Q, Li Y. Role-aware modeling for n-ary relational knowledge bases. In: Proc. of the Web Conf. 2021. New York: Association for Computing Machinery, 2021. 2660-2671.
    [13] Xu F, He F, Xie E, Li L. Fast OBDD reordering using neural message passing on hypergraph. arXiv:1811.02178, 2018.
    [14] Hu BD, Wang XG, Wang XY, Song ML, Chen C. Survey on hypergraph learning: Algorithm classification and application analysis. Ruan Jian Xue Bao/Journal of Software, 2022, 33(2): 498-523(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6353.htm [doi: 10.13328/j.cnki.jos.006353]
    [15] Yang B, Yih WT, He X, Gao J, Deng L. Embedding entities and relations for learning and inference in knowledge bases. arXiv: 1412.6575, 2014.
    [16] Trivedi R, Dai H, Wang Y, Song L. Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. In: Proc. of the Int’l Conf. on Machine Learning. 2017. 3462-3471.
    [17] García-Durán A, Dumančić S, Niepert M. Learning sequence encoders for temporal knowledge graph completion. arXiv:1809. 03202, 2018.
    [18] Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Proc. of the 26th Int’l Conf. on Neural Information Processing Systems. New York: Curran Associates, Inc., 2013. 2787-2795.
    [19] Leblay J, Chekol MW. Deriving validity time in knowledge graph. In: Companion Proc. of the the Web Conf. 2018. Int’l World Wide Web Conf. Steering Committee, 2018. 1771-1776.
    [20] Sadeghian A, Armandpour M, Colas A, Wang DZ. ChronoR: Rotation based temporal knowledge graph embedding. In: Proc. of the AAAI Conf. on Artificial Intelligence. Palo Alto: AAAI, 2021. 6471-6479.
    [21] Schlichtkrull M, Kipf TN, Bloem P, Berg RV, Titov I, Welling M. Modeling relational data with graph convolutional networks. In: Proc. of the European Semantic Web Conf. Cham: Springer, 2018. 593-607.
    [22] Li Z, Jin X, Li W, Guan S, Guo J, Shen H, Wang Y, Cheng X. Temporal knowledge graph reasoning based on evolutional representation learning. In: Proc. of the 44th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2021. 408-417.
    [23] Kazemi SM, Buchman D, Kersting K, Natarajan S, Poole D. Relational logistic regression. In: Proc. of the 14th Int’l Conf. on the Principles of Knowledge Representation and Reasoning. Vancouver: University of British Columbia, 2014.
    [24] Zhang R, Li J, Mei J, Mao Y. Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding. In: Proc. of the 2018 World Wide Web Conf. Int’l World Wide Web Conf. Steering Committee, 2018. 1185-1194.
    [25] Abboud R, Ceylan I, Lukasiewicz T, Salvatori T. Boxe: A box embedding model for knowledge base completion. In: Advances in Neural Information Processing Systems. New York: Curran Associates, Inc., 2020. 9649-9661.
    [26] Liu Y, Yao Q, Li Y. Generalizing tensor decomposition for n-ary relational knowledge bases. In: Proc. of the Web Conf. New York: Association for Computing Machinery, 2020. 1104-1114.
    [27] Balažević I, Allen C, Hospedales TM. Tucker: Tensor factorization for knowledge graph completion. arXiv:1901.09590, 2019.
    [28] Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics, 1927, 6(1-4): 164-189.
    [29] Fatemi B, Taslakian P, Vazquez D, Poole D. Knowledge hypergraphs: Prediction beyond binary relations. arXiv:1906.00137, 2019.
    [30] Kazemi SM, Poole D. Simple embedding for link prediction in knowledge graphs. In: Advances in Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018. 4289-4300.
    [31] Di S, Yao Q, Chen L. Searching to sparsify tensor decomposition for n-ary relational data. In: Proc. of the Web Conf. New York: Association for Computing Machinery, 2021. 4043-4054.
    [32] Guan S, Jin X, Wang Y, Cheng X. Link prediction on n-ary relational data. In: Proc. of the World Wide Web Conf. New York: Association for Computing Machinery, 2019. 583-593.
    [33] Rosso P, Yang D, Cudré-Mauroux P. Beyond triplets: Hyper-relational knowledge graph embedding for link prediction. In: Proc. of the Web Conf. New York: Association for Computing Machinery, 2020. 1885-1896.
    [34] Guan S, Jin X, Guo J, Wang Y, Cheng X. Neuinfer: Knowledge inference on n-ary facts. In: Proc. of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020. 6141-6151.
    [35] Galkin M, Trivedi P, Maheshwari G, Usbeck R, Lehmann J. Message passing for hyper-relational knowledge graphs. arXiv:2009. 10847, 2020.
    附中文参考文献:
    [1] 王鑫, 邹磊, 王朝坤, 彭鹏, 冯志勇. 知识图谱数据管理研究综述. 软件学报, 2019, 30(7): 2139-2174. http://www.jos.org.cn/1000-9825/5841.htm [doi: 10.13328/j.cnki.jos.005841]
    [8] 侯中妮, 靳小龙, 陈剑赟, 官赛萍, 王元卓, 程学旗. 知识图谱可解释推理研究综述. 软件学报, 2022, 33(12): 4644-4667. http://www.jos.org.cn/1000-9825/6522.htm [doi: 10.13328/j.cnki.jos.006522]
    [9] 杨东华, 何涛, 王宏志, 王金宝. 面向知识图谱的图嵌入学习研究进展. 软件学报, 2022, 33(9): 3370-3390. http://www.jos.org.cn/1000-9825/6426.htm [doi: 10.13328/j.cnki.jos.006426]
    [14] 胡秉德, 王新根, 王新宇, 宋明黎, 陈纯. 超图学习综述: 算法分类与应用分析. 软件学报, 2022, 33(2): 498-523. http://www.jos.org.cn/1000-9825/6353htm [doi: 10.13328/j.cnki.jos.006353]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈子睿,王鑫,王晨旭,张少伟,闫浩宇.面向时间感知的知识超图链接预测.软件学报,2023,34(10):4533-4547

复制
分享
文章指标
  • 点击次数:1606
  • 下载次数: 4376
  • HTML阅读次数: 1954
  • 引用次数: 0
历史
  • 收稿日期:2022-07-05
  • 最后修改日期:2022-08-18
  • 在线发布日期: 2023-01-13
  • 出版日期: 2023-10-06
文章二维码
您是第19795269位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号