面向智能计算框架的即时缺陷预测
作者:
作者单位:

作者简介:

葛建(1999-),男,硕士生,主要研究领域为代码异味,软件质量保障;虞慧群(1967-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为软件工程,可信计算,云计算,形式化方法;范贵生(1980-),男,博士,副研究员,博士生导师,CCF专业会员,主要研究领域为复杂软件系统的形式化方法,服务计算,软件架构分析技术;唐锏浩(1999-),男,硕士生,主要研究领域为软件质量保障;黄子杰(1994-),男,博士生,CCF学生会员,主要研究领域为代码异味,软件质量保障,程序理解,实证软件工程.

通讯作者:

虞慧群,E-mail:yhq@ecust.edu.cn;范贵生,E-mail:gsfan@ecust.edu.cn;黄子杰,E-mail:hzj@mail.ecust.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61772200); 上海市自然科学基金(21ZR1416300)


Just-in-time Defect Prediction for Intelligent Computing Frameworks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为人工智能工程化的实现工具, 智能计算框架已在近年来被广泛应用, 其可靠性对于人工智能的有效实现至关重要. 然而, 智能计算框架的可靠性保障具有挑战性, 一方面, 智能计算框架代码迭代迅速、测试困难; 另一方面, 与传统软件不同, 智能计算框架涉及大量张量计算, 其代码规范缺乏软件工程理论指导. 为了解决这一问题, 现有的工作主要使用模糊测试手段实现缺陷定位, 然而, 这类方法只能实现特定类型缺陷的精准定位, 却难以即时地在开发过程中引导开发者关注软件质量. 因此, 将国内外常见的智能计算框架(TensorFlow, 百度飞桨等)作为研究对象, 选取多种变更特征构建数据集, 在代码提交级别对智能计算框架进行即时缺陷预测. 另外, 在此基础上使用LDA主题建模技术挖掘代码和代码提交信息作为新的特征, 并使用随机森林进行预测. 结果发现AUC-ROC平均值为0.77, 且语义信息可以略微提升预测性能. 最后, 使用可解释机器学习方法SHAP分析各特征属性对模型预测输出的影响, 发现: (1)基本特征对于模型的影响符合传统软件开发规律; (2)代码和提交信息中的语义特征对模型的预测结果有重要影响; (3)不同系统中的不同特征对模型预测输出的贡献度排序也存在较大差异.

    Abstract:

    In recent years, intelligent computing frameworks have been widely applied as implementation tools in artificial intelligence (AI) engineering, and the reliability of the frameworks is the key to AI implementation effectiveness. However, the reliability assurance of intelligent computing frameworks is challenging. On one hand, the code iteration of frameworks is fast, with difficult code testing. On the other hand, unlike traditional software, intelligent computing frameworks involve a large number of tensor calculations, and the code specification lacks the guidance of software engineering theory. To this end, existing research mostly employs fuzzy testing to localize defects. However, such a method can only accurately discover specific fault types, and it is difficult to guide developers and make them focus on software quality during the development process. Therefore, this study takes the popular intelligent computing frameworks (TensorFlow, Baidu PaddlePaddle, etc.) as the research object, selects multiple change features to build datasets, and conducts just-in-time prediction on the defects of the intelligent computing framework at the code submission level. Additionally, LDA is employed to mine codes and code submission information as new features, and then the random forest is adopted for prediction. Results show that the average AUC-ROC is 0.77, and semantic information can slightly improve the prediction performance. Finally, this study leverages an explainable machine learning method called SHAP to analyze the influence of each feature on the prediction output of the model. The findings are as follows. (1) The influence of basic features on the model conforms to traditional software development laws. (2) Code and semantic features in submitted information are important in the prediction result of the model. (3) The contribution of different features in different systems to the output of the prediction model varies a lot.

    参考文献
    相似文献
    引证文献
引用本文

葛建,虞慧群,范贵生,唐锏浩,黄子杰.面向智能计算框架的即时缺陷预测.软件学报,2023,34(9):3966-3980

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-04
  • 最后修改日期:2022-10-13
  • 录用日期:
  • 在线发布日期: 2023-01-13
  • 出版日期: 2023-09-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号