摘要:近年来, RGB-D显著性检测方法凭借深度图中丰富的几何结构和空间位置信息, 取得了比RGB显著性检测模型更好的性能, 受到学术界的高度关注. 然而, 现有的RGB-D检测模型仍面临着持续提升检测性能的需求. 最近兴起的Transformer擅长建模全局信息, 而卷积神经网络(CNN)擅长提取局部细节. 因此, 如何有效结合CNN和Transformer两者的优势, 挖掘全局和局部信息, 将有助于提升显著性目标检测的精度. 为此, 提出一种基于跨模态交互融合与全局感知的RGB-D显著性目标检测方法, 通过将Transformer网络嵌入U-Net中, 从而将全局注意力机制与局部卷积结合在一起, 能够更好地对特征进行提取. 首先借助U-Net编码-解码结构, 高效地提取多层次互补特征并逐级解码生成显著特征图. 然后, 使用Transformer模块学习高级特征间的全局依赖关系增强特征表示, 并针对输入采用渐进上采样融合策略以减少噪声信息的引入. 其次, 为了减轻低质量深度图带来的负面影响, 设计一个跨模态交互融合模块以实现跨模态特征融合. 最后, 5个基准数据集上的实验结果表明, 所提算法与其他最新的算法相比具有显著优势.