基于跨域关联与隐私保护的深度推荐模型
作者:
作者单位:

作者简介:

王利娥(1981-),女,博士,教授,CCF专业会员,主要研究领域为网络与信息安全,推荐系统,机器学习;李东城(1995-),男,硕士,CCF专业会员,主要研究领域为网络与信息安全,机器学习.;李先贤(1969-),男,教授,博士生导师,CCF专业会员,主要研究领域为数据安全,分布式系统安全,可信软件

通讯作者:

李东城,E-mail:hatislee@163.com;李先贤,E-mail:lixx@gxnu.edu.cn

中图分类号:

TP309

基金项目:

国家自然科学基金(61662008);广西自然科学基金(2020GXNSFAA297075);“八桂学者”工程专项,广西大数据智能与应用人才小高地,广西区域多源信息集成与智能处理协同创新中心,广西多源信息挖掘与安全重点实验室系统性研究课题基金(19-A-02-02)


Deep Recommendation Model with Cross-domain Association and Privacy Protection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    推荐系统能够根据用户的偏好有效地过滤信息,已被广泛应用于各行各业,但随着用户数量的爆炸式增长,数据稀疏性和冷启动问题日益严重.多源数据融合可以有效缓解数据稀疏和冷启动情况下的推荐精度,其主要思想是融合用户在其他方面的辅助信息来填补缺失值,以优化目标服务的推荐准确度,受到了研究者的青睐,但由于数据之间的关联引入了更为严重的隐私泄露风险.针对以上问题,提出一种基于跨域关联与隐私保护的深度推荐模型,设计一种具有多源数据融合和差分隐私保护特征的深度学习协同推荐方法.该方法一方面融合辅助领域信息以提高推荐的精确度,同时修正异常点的偏差,改善推荐系统的性能;另一方面针对数据融合中的数据安全问题,基于差分隐私模型在协同训练过程中加入噪音以保证数据的安全性.为了更好地评价推荐系统中的长尾效应,首次提出一种新的评价指标-发现度,用以度量推荐算法发现用户隐性需求的能力.基于已有算法进行了性能对比与分析,实验结果证明,所提方法在保证隐私安全的前提下,比现有方法具有更好的推荐精度和多样性,能够有效地发现用户的隐性需求.

    Abstract:

    Recommendation systems, which can effectively filter information based on user preferences, has been applied widely. The problem of cold start and data sparsity becomes more and more serious with the explosive growth of the number of users. Multi-source data fusion, which can effectively alleviate the recommendation accuracy under the conditions of data sparsity and the cold start problem, is favored by researchers. Its main idea is to fuse auxiliary information of users in other aspects for missing values filling to optimize the accuracy of target recommendation service. Nevertheless, more serious risk of privacy disclosure is introduced due to the relations between data. To solve the above problems, this study proposes a deep cross-domain recommendation model with privacy protection. In detail, a deep learning collaborative recommendation method is designed featuring multi-source data fusion and differential privacy protection. On the one hand, this method fuses auxiliary domain information to improve the accuracy of recommendation and corrects the deviation of abnormal points to improve the performance of the recommender system; on the other hand, this method adds noise in the collaborative training process based on differential privacy model to solve the data security problem in data fusion. In order to evaluate the long tail effect in the recommendation system, this study proposes a new metric—discovery degree for the first time, which is used to measure the ability of the recommendation algorithm to find users’ invisible requirements. Based on the performance comparison and analysis of the existing algorithms, the results show that the proposed method has better recommendation accuracy and diversity than the existing methods on the premise of ensuring privacy security, and can effectively discover the hidden needs of users.

    参考文献
    相似文献
    引证文献
引用本文

王利娥,李东城,李先贤.基于跨域关联与隐私保护的深度推荐模型.软件学报,2023,34(7):3365-3384

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-26
  • 最后修改日期:2021-01-28
  • 录用日期:
  • 在线发布日期: 2022-11-30
  • 出版日期: 2023-07-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号