主动自动机学习中的等价查询算法优化
作者:
作者单位:

作者简介:

潘雁(1995-),男,博士生,主要研究领域为软件逆向,协议脆弱性分析;祝跃飞(1962-),男,博士,教授,博士生导师,主要研究领域为网络安全,密码学

通讯作者:

祝跃飞,E-mail:yfzhu17@sina.com

中图分类号:

基金项目:

国家重点研发计划(2019QY1300)


Optimization of Equivalence Query Algorithm in Active Automata Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模型学习是一种获取黑盒软件系统行为模型的有效方法,可分为主动学习和被动学习.主动学习是基于字母表构造测试用例,通过与黑盒系统主动交互,可在多项式时间内得到目标系统的最小完备自动机,其中等价查询仍是开发和应用主动自动机学习工具的障碍之一.通过探讨反例对于学习算法的影响,定义假设的比较规则,提出测试用例构造的两个原则,同时依据原则对Wp-method等价查询算法改进,产生更优的假设,有效降低查询的数量,并基于LearnLib开源工具,分别以3类自动机为实验对象验证原则和改进算法的有效性.

    Abstract:

    As an effective technique for black-box state machine models of software systems, model learning (a.k.a. automata learning) can be divided into active and passive learning. Based on given input and output alphabets, the minimum complete state machine of the target system can be obtained in polynomial time through active interaction with the black box system. And the algorithm of equivalence query is still a big obstacle to the development and application of active automata learning tools. This study discusses the influence of counterexamples on the learning algorithms with the discrimination tree, and defines the comparison rules of hypotheses, and proposes two principles of constructing test cases. According to the principle, the Wp-method equivalence query algorithm is improved to produce better hypotheses and effectively reduce the number of queries and symbols. Based on the LearnLib, three kinds of automata are used as experimental objects to verify the effectiveness of the principle and the improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

潘雁,祝跃飞.主动自动机学习中的等价查询算法优化.软件学报,2023,34(7):3241-3255

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-26
  • 最后修改日期:2021-09-27
  • 录用日期:
  • 在线发布日期: 2022-09-23
  • 出版日期: 2023-07-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号