Abstract:In smart healthcare, cloud computing and the Internet of Things are combined to solve the problem of real-time access to large-scale data. However, the data is uploaded to a remote cloud. It increases additional communication cost and transmission delay. Fog computing has been introduced into smart healthcare to solve this problem. The fog servers assist the cloud server to complete data storage and access locally. It contributes to low latency and high mobility. Since the medical data is highly sensitive, how to design a fog computing-based smart healthcare authentication protocol has become a research hotspot. If the data is tampered illegally, the consequences will be catastrophic. Hence, the authentication protocol should be secure against various attacks and realize the secure data transmission among users, fog nodes, and cloud servers. This study analyzes two schemes for smart healthcare, and points out that Hajian et al.’s scheme cannot resist stolen verifier attack, denial of service attacks, impersonation attacks, node capture attack, and session key disclosure attacks; Wu et al.’s scheme cannot resist offline password guessing attacks and impersonation attacks. Furthermore, a fog computing-based three-party authentication and key agreement protocol are proposed for smart healthcare. The security is proved by using the random oracle model, the BAN logic, and heuristic analysis. As result, it is secure against known attacks. The performance comparison with related schemes shows that the proposed scheme is more suitable for fog computing-based smart healthcare.