基于谱聚类的在线数据库垂直分区多阶段生成方法
作者:
作者单位:

作者简介:

刘鹏举(1997-),男,博士生,主要研究领域为智能数据分区,组合优化,负载预测,强化学习;李好洋(1999-),男,博士生,主要研究领域为数据库分区优化,自然语言处理;王天一(1999-),女,硕士生,主要研究领域为数据库分区与布局,机器学习;刘欢(1997-),男,硕士生,主要研究领域为数据分区,机器学习,图神经网络;孙路明(1994-),男,博士生,主要研究领域为机器学习,数据库系统;任逸飞(1987-),男,高级工程师,主要研究领域为NoSQL数据库,主存数据库,分布式键值存储引擎;李翠平(1971-),女,博士,教授,博士生导师,CCF杰出会员,主要研究领域为社交网络分析,社会推荐,大数据分析及挖掘;陈红(1965-),女,博士,教授,博士生导师,CCF杰出会员,主要研究领域为数据库技术,新硬件平台下的高性能计算

通讯作者:

李翠平,licuiping@ruc.edu.cn

中图分类号:

TP311

基金项目:

国家重点研发计划(2018YFB1004401);国家自然科学基金(61772537,61772536,62072460,62076245,62172424)


Multi-stage Method for Online Vertical Data Partitioning Based on Spectral Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    垂直数据分区技术从逻辑上将满足一定语义条件的数据库表属性存放在同一个物理块中,进而降低数据访问成本,提高查询效率.数据库查询负载中的每条查询通常只与数据库表中的部分属性有关,因此只需使用数据库表的某个属性子集便可以得到准确的查询结果.合理的垂直数据分区方式可以使大多数查询负载不需要扫描完整数据库就可以完成查询任务,从而达到减少数据访问量,提高查询处理效率的目的.传统的数据库垂直分区方法主要基于专家设置的启发式规则,分区策略粒度较粗,且不能根据负载的特征进行有针对性的分区优化.同时,当负载规模较大或者属性个数较多时,现有垂直分区方法执行时间过长,尤其无法满足数据库在线实时调优的性能需求.为此,提出在线环境下基于谱聚类的垂直数据分区方法(spectral clustering based vertical partitioning,SCVP),采用分阶段求解的思想,减少算法时间复杂度,加快分区执行速度.首先通过增加约束条件缩小解空间(即根据谱聚类生成初始分区),然后对解空间设计算法进行精细的搜索(即采用频繁项集和贪心搜索相结合的策略对初始分区进行优化).为了进一步提升SCVP在高维属性下的性能,提出了SCVP的改进版本SCVP-R (spectral clustering based vertical partitioning redesign).SCVP-R通过引入同域竞争机制、双败淘汰机制和循环机制,对SCVP在分区优化过程中的合并方案进行了进一步优化.在不同数据集上的实验结果表明,相比于目前最好的垂直分区方法,SCVP和SCVP-R有着更快的执行时间和更好的性能表现.

    Abstract:

    Vertical data partitioning technology logically stores database table attributes satisfying certain semantic conditions in the same physical block, so as to reduce the cost of data accessing and improve the efficiency of query processing. Every query is usually related only to the table’s some attributes in the database, so a subset of the table’s attributes can be used to get the accurate query results. Reasonable vertical data partitioning can make most queries answered without scanning the whole table, so as to reduce the amount of data accessing and improve the efficiency of query processing. Traditional database vertical partitioning methods are mainly based on heuristic rules set by experts. The granularity of partitioning is coarse, and it can not provide different partition optimizations according to the characteristics of workload. Besides, when the scale of workload or the number of attributes becomes large, the execution time of the existing methods are too long to meet the performance requirements of online real-time tuning of database. Therefore, a method called spectral clustering based vertical partitioning (SCVP) is proposed for the online environment. The idea of phased solution is adapted to reduce the time complexity of the algorithm and speed up partitioning. Firstly, SCVP reduces the solution space by increasing the constraint conditions, that is, generating initial partitions by spectral clustering. Secondly, SCVP designs the algorithm to search solution space, that is, the initial partitions are optimized by combining frequent itemset mining and greedy search. In order to further improve the performance of SCVP under high-dimensional attributes, a new method called special clustering based vertical partitioning redesign (SCVP-R) is proposed which is an improved version of SCVP. SCVP-R optimizes the partitions combiner component of SCVP by introducing sympatric-competition mechanism, double-elimination mechanism, and loop mechanism. The experimental results on different datasets show that SCVP and SCVP-R have faster execution time and better performance than the current state-of-the-art vertical partitioning method.

    参考文献
    相似文献
    引证文献
引用本文

刘鹏举,李好洋,王天一,刘欢,孙路明,任逸飞,李翠平,陈红.基于谱聚类的在线数据库垂直分区多阶段生成方法.软件学报,2023,34(6):2804-2832

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-25
  • 最后修改日期:2021-08-21
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期: 2023-06-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号