面向软件工程的情感分析技术研究
作者:
作者单位:

作者简介:

陈震鹏(1994-),男,博士,主要研究领域为软件解析学;姚惠涵(1997-),女,硕士生,主要研究领域为软件解析学;曹雁彬(1996-),女,硕士,主要研究领域为软件解析学;刘譞哲(1980-),男,博士,副教授,博士生导师,CCF杰出会员,主要研究领域为服务计算,系统软件;梅宏(1963-),男,博士,教授,博士生导师,CCF会士,主要研究领域为软件工程,系统软件.

通讯作者:

刘譞哲,xzl@pku.edu.cn

中图分类号:

基金项目:

北大百度基金(2020BD007)


Research on Sentiment Analysis in Software Engineering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    情感分析在软件工程领域具有广泛的应用场景,例如,从代码提交信息中检测开发者的情绪、从程序员问答论坛中识别开发者的观点等.但是,现有的“开箱即用”的情感分析工具无法在软件工程相关的任务中取得可靠的结果.已有研究表明,导致不可靠结果的最主要原因是,这些工具无法理解一些单词和短语在软件工程领域中的特定含义.此后,研究者们开始为软件工程领域定制监督学习和远程监督学习方法.为了验证这些方法的效果,研究者们使用软件工程相关的标注数据集来对它们进行数据集内验证,即,将同一数据集划分为训练集和测试集,分别用于方法的训练和测试.但是,对软件工程领域的某些情感分析任务来说,尚无标注数据集,且人工标注数据集耗时耗力.在此情况下,一种可选的方法就是使用为了相似任务从同一目标平台上提取的数据集或者使用从其他软件工程平台上提取的数据集.为了验证这两种做法的可行性,需要进一步以平台内设置和跨平台设置来验证现有情感分析方法.平台内设置指的是使用提取自同一平台的不同数据集作为训练集和测试集;跨平台设置指的是使用提取自不同平台的数据集作为训练集和测试集.目标旨在数据集内设置、平台内设置、跨平台设置这3种设置下,综合验证现有的为软件工程定制的情感分析方法.最终,实验结果为相关的研究者和从业者提供了具有现实指导意义的启示.

    Abstract:

    Sentiment analysis has various application scenarios in software engineering (SE), such as detecting developers’ emotions in commit messages and identifying developers’ opinions on Q&A forums. Nevertheless, commonly used out-of-box sentiment analysis tools cannot obtain reliable results in SE tasks and misunderstanding of technical knowledge is demonstrated to be the main reason. Then researchers start to customize SE-specific methods in supervised or distantly supervised ways. To assess the performance of these methods, researchers use SE-related annotated datasets to evaluate them in a within-dataset setting, that is, they train and test each method using data from the same dataset. However, the annotated dataset for an SE-specific sentiment analysis task is not always available. Moreover, building a manually annotated dataset is time-consuming and not always feasible. An alternative is to use datasets extracted from the same platform for similar tasks or datasets extracted from other SE platforms. To verify the feasibility of these practices, it is needed to evaluate existing methods in within-platform and cross-platform settings, which refer to training and testing each method using data from the same platform but not the same dataset, and training and testing each classifier using data from different platforms. This study comprehensively evaluates existing SE-customized sentiment analysis methods in within-dataset, within-platform, and cross-platform settings. Finally, the experimental results provide actionable insights for both researchers and practitioners.

    参考文献
    相似文献
    引证文献
引用本文

陈震鹏,姚惠涵,曹雁彬,刘譞哲,梅宏.面向软件工程的情感分析技术研究.软件学报,2023,34(5):2218-2230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-11
  • 最后修改日期:2021-03-29
  • 录用日期:
  • 在线发布日期: 2022-09-16
  • 出版日期: 2023-05-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号