利用双主题表征的涉案微博评价对象识别方法
作者:
作者单位:

作者简介:

相艳(1979-),女,博士,副教授,主要研究领域为自然语言处理,情感计算;余正涛(1970-),男,博士,教授,CCF高级会员,主要研究领域为自然语言处理,神经机器翻译,信息检索;郭军军(1987-),男,博士,副教授,CCF专业会员,主要研究领域为自然语言处理,神经机器翻译,多模态情感分析;黄于欣(1983-),男,博士,副教授,主要研究领域为自然语言处理,文本摘要;线岩团(1981-),男,博士,副教授,主要研究领域为自然语言处理,信息检索.

通讯作者:

中图分类号:

TP18

基金项目:

国家重点研发计划(2018YFC0830105, 2018YFC0830101, 2018YFC0830100); 云南省重大科技专项计划(202002AD080001); 云南省基础研究专项面上项目(202001AT070047, 202001AT070046)


Identification Method of Microblog Opinion Targets Involved in Cases Based on Dual Topic Representation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微博评价对象识别是涉案网络舆情分析的基础. 目前基于主题表征的评价对象识别方法需要预设固定的主题数目, 且最终评价对象识别依赖人工推断. 针对此问题, 提出一种弱监督涉案微博评价对象识别方法, 仅采用少量标签评论即可实现对评价对象的自动识别. 具体实现思路为: 首先基于变分双主题表征网络对评论进行两次编码和重构, 获得丰富的主题特征; 然后, 利用少量标签评论, 引导主题表征网络自动判别评价对象类别; 最后采用联合训练策略, 对双主题表征的重构损失与评价对象分类损失进行联合调优, 最终实现对评价对象的自动分类和评价对象词项的挖掘. 在涉案舆情的两个数据集上进行了实验, 结果表明, 所提出的模型在评价对象分类、评价对象词项的主题连贯性和多样性等方面均优于几个基线模型.

    Abstract:

    The identification of opinion targets in microblog is the basis of analyzing network public opinion involved in cases. At present, the identification method of opinion targets based on topic representation needs to preset a fixed number of topics, and the final results rely on artificial inference. In order to solve these problems, this study proposes a weak supervision method, which only uses a small number of labelled comments to automatically identify the opinion targets in microblog. The specific implementation is as follows. Firstly, the comments are encoded and reconstructed twice based on the variational dual topic representation network to obtain rich topic features. Secondly, a small number of labelled comments are used to guide the topic representation network to automatically identify the opinion targets. Finally, the reconstruction loss of double topic representation and the classification loss of opinion targets identification are optimized together by the joint training strategy, to classify comments of opinion targets automatically and mine target terms. Experiments are carried out on two data sets of microblogs involved in cases. The results show that the proposed model outperforms several baseline models in the classification of opinion targets, topic coherence, and diversity of target terms.

    参考文献
    相似文献
    引证文献
引用本文

相艳,余正涛,郭军军,黄于欣,线岩团.利用双主题表征的涉案微博评价对象识别方法.软件学报,2023,34(4):1811-1823

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-16
  • 最后修改日期:2021-02-04
  • 录用日期:
  • 在线发布日期: 2022-07-07
  • 出版日期: 2023-04-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号