基于标签对齐的多模态一致性表型关联方法
作者:
作者简介:

汪美玲(1988-),女,博士,CCF专业会员,主要研究领域为影像遗传学,机器学习;张道强(1978-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为医学影像分析,数据挖掘,机器学习;邵伟(1986-),男,博士,副教授,CCF专业会员,主要研究领域为生物信息学,机器学习.

通讯作者:

张道强,E-mail:dqzhang@nuaa.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金(61876082,61902183,61861130366,61732006);国家重点研发计划(2018YFC2001600,


Label-aligned Multi-modality Consistent Phenotype Association Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,随着脑影像和基因技术的发展,脑影像遗传学得到了广泛的关注.在脑影像遗传研究中,检验遗传变异(即单核苷酸多态性(single nucleotide polymorphisms,SNPs))对大脑结构或功能的影响是一项艰巨的任务.此外,提取的多模态脑表型和来自同一区域的一致性脑影像标志物为理解疾病(例如,阿尔茨海默病(Alzheimer’s disease,AD))的机理提供了更多的见解.利用多模态脑表型作为桥接风险基因位点和疾病状态的中间特征,设计通过标签对齐的多模态学习方法来识别AD中风险基因位点与疾病状态之间的一致性表型.首先,用标准的多模态方法去探索和AD相关的基因位点(即APOEe4 rs429358)与多模态脑影像之间关系;其次,为了利用标记样本之间的标签信息,在标准多模态方法的目标函数中添加了一个新的标签对齐正则化项,使得所有具有相同类别标签的多模态样本在映射空间中更靠近;最后,在公开的ADNI (Alzheimer’s disease neuroimaging initiative)数据集上的3种脑影像(即大脑的结构组织信息、脱氧葡萄糖正电子发射断层扫描和正电子发射断层扫描淀粉样蛋白成像)进行实验.实验结果表明:该方法可以在多模态脑影像上发现鲁棒的、一致性脑区域来解释AD的病因,并在3个模态上将相关系数分别提高了8%,9%,5%.

    Abstract:

    Recently, with the rapid development of imaging and genomic techniques, the brain imaging genetics has received extensive attention. In the brain imaging genetic studies, it is a challenging task to examine the influence of genetic variants, i.e., single nucleotide polymorphisms (SNPs), on structures or functions of human brains. In addition, multimodal brain imaging phenotypes extracted from different perspectives and imaging markers from the same region consistently showing up in multimodalities gives more ways to understand the diseases mechanism, such as Alzheimer's disease (AD). Accordingly, This work exploits multi-modal brain imaging phenotypes as intermediate traits to bridge genetic risk factors and disease status. Consistent phenotype between genetic risk factors and disease status is discovered via the designed label-aligned multi-modality regression method in AD. Specifically, standard multi-modality method is first applied to explore the relationship between the well-known AD risk SNP APOEe4 rs429358 and multimodal brain imaging phenotypes. Secondly, to utilize the label information among labeled subjects, a new label-aligned regularization is included into the standard multi-modality method. In such way, all multimodality subjects with the same class labels should be closer in the new embedding space. Finally, the experiments are conducted on three baseline brain imaging modalities, i.e., voxel-based measures extracted from structural magnetic resonance imaging, fluorodeoxyglucose positron emission tomography and F-18 florbetapir PET scans amyloid imaging, from the Alzheimer's disease neuroimaging initiative (ADNI) database. Related experimental results validate that the proposed method can identify robust and consistent regions of interests over multi-modality imaging data to guide the disease-induced interpretation. Furthermore, the values of correlation coefficient have been increased by 8%, 9%, and 5% in comparison with the best results of the existing algorithms on three modalities.

    参考文献
    [1] Brookmeyer R, Johnson E, Ziegler-Graham K, et al.Forecasting theglobal burden of Alzheimer's disease.Alzheimer's and Dementia, 2007, 3(3):186-191.
    [2] Winklern AM, Kochunov P, Blangero J, et al.Cortical thicknessor grey matter volume? The importance of selecting the phenotype forimaging genetics studies.NeuroImage, 2010, 53(3):1135-1146.
    [3] Lambert JC,Ibrahimverbaas CA, Harold D, et al.Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease.Nature Genetics, 2013, 9(4):1452-1458.
    [4] Tian J, Bai J, Bao SL.Preface of the special issue on medical image processing and analysis.Ruan Jian Xue Bao/Journal of Software, 2009, 20(5):1087-1088(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3616.htm
    [5] Zhao XJ, Long ZY, Guo XJ, et al.Analysis of magnetic resonance imaging data on the study of Alzheimer's disease.Ruan Jian Xue Bao/Journal of Software, 2009, 20(5):1123-1138(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3556.htm[doi:10.3724/SP.J.1001.2009.03556]
    [6] Jie B, Zhang DQ.The novel graph kernel for brain networks with application to MCI classification.Chinese Journal of Computers, 2016, 39(8):1667-1680(in Chinese with English abstract).
    [7] Wang XL, Wang ZQ, Wang ZY, et al.Multi-frequency fused graph kernel of brain network for Alzheimer's disease.Chinese Journal of Computers, 2020, 43(1):64-77(in Chinese with English abstract).
    [8] Zu C.Research on brain image analysis based on sparse structural feature learning and their applications[Ph.D.Thesis].Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese with English abstract).
    [9] Glahn DC, Thompson PM, Blangero J.Neuroimaging endophenotypes:Strategies for finding genes influencing brain structureand function.Human Brain Mapping, 2007, 28(6):488-501.
    [10] Ge T, Schumann G, Feng J.Imaging genetics-towards discoveryneuroscience.Quantitative Biology, 2013, 1(4):227-245.
    [11] Fu Y, Ma Z, Hamilton C, et al.Genetic influences on resting-statefunctional networks:A twin study.Human Brain Mapping, 2015, 36(10):3959-3972.
    [12] Hao X, Li C, Yao X, et al.Mining outcome-relevant brain imaging genetic associations via three-way sparse canonical correlation analysis in Alzheimer's disease.Scientific Reports, 2017, 7:44272.
    [13] Hao X, Li C, Yan J, et al.Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis.Bioinformatics, 2017, 33(14):i341-i349.
    [14] Song A, Yan J, Kim S, et al.Network-based analysis of genetic variants associated with hippocampal volume in Alzheimer's disease:Astudy of ADNI cohorts.BioData Mining, 2016, 9(1):1-8.
    [15] Yao X, Yan J, Liu K, et al.Tissue-specific network-based genomewide study of amygdala imaging phenotypes to identify functionalinteraction modules.Bioinformatics, 2017, 33(20):3250-3257.
    [16] Consortium B, Anttila V, Bulik-Sullivan B, et al.Analysis of sharedheritability in common disorders of the brain.Science, 2018, 360(6395):eaap8757.
    [17] Shao W, Han Z, Cheng J, et al.Integrative analysis of pathological images and multi-dimensional genomic data for early-stage cancer prognosis.IEEE Trans.on Medical Imaging, 2019, 39(1):99-110.
    [18] Wang M, Shao W, Hao X, et al.Identify consistent cross-modality imaging genetic patterns via discriminant sparse canonical correlation analysis.IEEE/ACM Trans.on Computational Biology and Bioinformatics, 2021, 18(4):1549-1561.
    [19] Shao W, Xiang S, Zhang Z, et al.Hypergraph based sparse canonical correlation analysis for the diagnosis of Alzheimer's disease from multi-dimensional genomic data.Methods, 2021, 189:86-94.
    [20] Hao XK.Research on machine-learning-based imaging genetics analysis and their applications[Ph.D.Thesis].Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese with English abstract).
    [21] Consortium TGP.A global reference for human genetic variation, the 1000 genomes project consortium.Nature, 2015, 526:68-74.
    [22] Stein JL, Hua X, Lee S, et al.Voxelwise genome-wide association study (vGWAS).NeuroImage, 2010, 53(3):1160-1174.
    [23] Hibar DP, Stein JL, Kohannim O, et al.Voxelwise gene-wide association study (vGeneWAS):Multivariate gene-based association testing in 731 elderly subjects.NeuroImage, 2011, 56(4):1875-1891.
    [24] Brun CC, LeporeN, Pennec X, et al.Mapping the regional influence of genetics on brain structure variability-A tensor-based morphometry study.NeuroImage, 2009, 48(1):37-49.
    [25] Filippini N, Rao A, Wetten S, et al.Anatomically-distinct genetic associations of APOE epsilon4 allele load with regional cortical atrophy in Alzheimer's disease.NeuroImage, 2009, 44(3):724-728.
    [26] Baranzini SE, Wang J, Gibson RA, et al.Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis.Human Molecular Genetics, 2009, 18(4):767-778.
    [27] Potkin SG, Turner JA, Guffanti G, et al.Genome-Wide strategies for discovering genetic influences on cognition and cognitive disorders:Methodological considerations.Cognitive Neuropsychiatry.2009, 14(4):391-418.
    [28] Vounou M, Nichols TE, Montana G.Discovering genetic associations with high-dimensional neuroimaging phenotypes:A sparse reduced-rank regression approach.NeuroImage, 2010, 53(3):1147-1159.
    [29] Vounou M, Janousova E, Wolz R, et al.Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease.NeuroImage, 2012, 60(1):700-716.
    [30] Batmanghelich NK, Dalca AV, Sabuncu MR, et al.Joint modeling of imaging and genetics.Inf Process Med Imaging, 2013, 23(23):766-777.
    [31] Argyriou A, Evgeniou T, Pontil M.Convex multi-task feature learning.Machine Learning, 2008, 73(3):243-272.
    [32] Obozinski G, Taskar B, Jordan MI.Joint covariate selection and joint subspace selection for multiple classification problems.Statistics and Computing, 2010, 20(2):231-252.
    [33] Zhang D, Shen D.Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease.NeuroImage, 2012, 59(2):895-907.
    [34] Shen L, Thompson PM.Brain imaging genomics:Integrated analysis and machine learning.Proc.of the IEEE, 2020, 108(1):125-162.
    [35] Hao X, Yao X, Yan J, et al.Identifying multimodal intermediate phenotypes between genetic risk factors and disease status in Alzheimer's disease.Neuroinformatics, 2016, 14(4):1-14.
    [36] Chen X, Pan WK, Kwok JT, et al.Accelerated gradient method for multi-task sparse learning problem.In:Proc.of the 9th IEEE Int'l Conf.on Data Mining.Miami, 2009.746-751.
    [37] Fang J, Lin D, Schulz SC, et al.Joint sparse canonical correlation analysis for detecting differential imaging genetics modules.Bioinformatics, 2016, 32(22):3480-3488.
    [38] Horinek D, Varjassyova A, Hort J.Magnetic resonance analysisof amygdalar volume in Alzheimer's disease.Current Opinion in Psychiatry, 2007, 20(3):273-277.
    [39] Laakso MP,Frisoni GB, Knnen M, et al.Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease:A morphometric MRI study.Biological Psychiatry, 2000, 47(12):1056-1063.
    [40] Shen L, Kim S, Risacher SL, et al.Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD:A study of the ADNI cohort.NeuroImage, 2010, 53(3):1051-1063.
    [41] Du L, Huang H, Yan J, et al.Structured sparse canonical correlationanalysis for brain imaging genetics:An improved graphnet method.Bioinformatics, 2016, 32(10):1544-1551.
    [42] Liu Y, Yu JT, Wang HF, et al.APOE genotype and neuroimaging markers of Alzheimer's disease:Systematic review and meta-analysis.Journal of Neurology Neurosurgery & Psychiatry, 2015, 86(2):127-134.
    [43] Reiman EM, Caselli RJ, Yun LS, et al.Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon4 allele for apolipoprotein E.New England Journal of Medicine, 1996, 334(12):752-758.
    [44] Camus V, Payoux P, Barre L, et al.Using PET with 18F-AV-45(florbetapir) to quantify brain amyloid load in a clinical environment.European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39(4):621-631.
    [45] Wishart HA, Saykin AJ, Mcallister TW, et al.Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele.Neurology, 2006, 67(7):1221-1224.
    附中文参考文献:
    [4] 田捷, 白净, 包尚联.医学影像处理与分析专刊前言.软件学报, 2009, 20(5):1087-1088.http://www.jos.org.cn/1000-9825/3616.htm
    [5] 赵小杰, 龙志颖, 郭小娟, 等.阿尔茨海默氏症研究中的磁共振成像数据分析.软件学报, 2009, 20(5):1123-1138.http://www.jos.org.cn/1000-9825/3556.htm[doi:10.3724/SP.J.1001.2009.03556]
    [6] 接标, 张道强.面向脑网络的新型图核及其在MCI分类上的应用.计算机学报, 2016, 39(8):1667-1680.
    [7] 汪新蕾, 王之琼, 王中阳, 等.面向阿尔茨海默病的脑网络多频段融合图核.计算机学报, 2020, 43(1):64-77.
    [8] 祖辰.基于稀疏结构特征学习的脑图像分析及其应用研究[博士学位论文].南京:南京航空航天大学, 2017.
    [20] 郝小可.基于机器学习的影像遗传学分析及其应用研究[博士学位论文].南京:南京航空航天大学, 2017.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪美玲,邵伟,张道强.基于标签对齐的多模态一致性表型关联方法.软件学报,2022,33(12):4545-4558

复制
分享
文章指标
  • 点击次数:573
  • 下载次数: 2273
  • HTML阅读次数: 2047
  • 引用次数: 0
历史
  • 收稿日期:2020-08-01
  • 最后修改日期:2021-02-03
  • 在线发布日期: 2022-12-03
  • 出版日期: 2022-12-06
文章二维码
您是第19795621位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号