面向视频冷启动问题的点击率预估
作者:
作者单位:

作者简介:

章磊敏(1994-),男,硕士,主要研究领域为人工智能,推荐系统;纪守领(1986-),男,博士,研究员,博士生导师,CCF高级会员,主要研究领域为人工智能与安全;董建锋(1991-),男,博士,研究员,CCF专业会员,主要研究领域为多媒体理解,计算机视觉;王勋(1967-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为可视媒体计算,模式识别;包翠竹(1990-),女,博士,讲师,CCF专业会员,主要研究领域为图像处理.

通讯作者:

董建锋,E-mail:dongjf24@gmail.com

中图分类号:

TP391

基金项目:

国家自然科学基金(61902347);浙江省自然科学基金(LQ19F020002,LGF21F020010)


Click-through Rate Prediction for Video Cold-start Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视频的点击率预估是视频推荐系统中的重要任务之一,推荐系统可以根据点击率的预估调整视频推荐顺序以提升视频推荐的效果.近年来,随着视频数量的爆炸式增长,视频推荐的冷启动问题也变得愈发严重.针对这个问题,提出了一个新的视频点击率预估模型,通过使用视频的内容特征以及上下文特征来加强视频点击率预估的效果;同时,通过对冷启动场景的模拟训练和基于近邻的替代方法提升模型应对新视频点击率预估的能力.提出的模型可以同时对旧视频和新视频进行点击率预估.在两个真实的电视剧(Track_1_series)和电影(Track_2_movies)点击率预估数据集上的实验表明:提出的模型可以显著改善对旧视频的点击率预估性能,并在两个数据集上均超过了现有的模型;对于新视频,相比于不考虑冷启动问题的模型只能获得0.57左右的AUC性能,该模型在两个数据集上分别获得0.645和0.615的性能,表现出针对冷启动问题更好的鲁棒性.

    Abstract:

    Video click-through rate (CTR) prediction is one of the important tasks in the context of video recommendation. According to click-through prediction, recommendation systems can adjust the order of the recommended video sequence to improve the performance of video recommendation. In recent years, with the explosive growth of videos, the problem of video cold start has become more and more serious. Aim for this problem, a novel video click-through prediction model is proposed which utilizes both the video content features and context features to improve CTR prediction; a simulation training of the cold start scenario and neighbor-based new video replacement method are also proposed to enhance the model's CTR prediction ability for new videos. The proposed model is able to predict CTR for both old and new videos. The experiments on two real-world video CTR datasets (Track_1_series and Track_2_movies) demonstrate the effectiveness of the proposed method. Specifically, the proposed model using both video content and contextual information improves the performance of CTR prediction for old videos, which also outperforms the existing models on both datasets. Additionally, for new videos, a baseline model without considering the cold start problem achieves an AUC score of about 0.57. By contrast, the proposed model gives much better AUC scores of 0.645 and 0.615 on Track_1_series and Track_2_movies, respectively, showing the better robustness to the cold start problem.

    参考文献
    相似文献
    引证文献
引用本文

章磊敏,董建锋,包翠竹,纪守领,王勋.面向视频冷启动问题的点击率预估.软件学报,2022,33(12):4838-4850

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-09
  • 最后修改日期:2021-04-11
  • 录用日期:
  • 在线发布日期: 2021-11-24
  • 出版日期: 2022-12-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号