Abstract:With the popularization of digital information technology, the reversible data hiding in encrypted images (RDHEI) has gradually become the research hotspot of privacy protection in cloud storage. As a technology which can embed additional information in encrypted domain, extract the embedded information correctly, and recover the original image without loss, RDHEI has been widely paid attention by researchers. To embed sufficient additional information in the encrypted image, a high-capacity RDHEI method using adaptive encoding is proposed in this study. Firstly, the occurrence frequency of different prediction errors of the original image is calculated and the corresponding adaptive Huffman coding is generated. Then, the original image is encrypted with stream cipher and the encrypted pixels are marked with different Huffman codewords according to the prediction errors. Finally, additional information is embedded in the reserved room of marked pixels by bit substitution. The experimental results show that the proposed algorithm can extract the embedded information correctly and recover the original image losslessly. Compared with similar algorithms, the proposed algorithm makes full use of the characteristics of the image itself and greatly improves the embedding rate of the image. On UCID, BOSSBase, and BOWS-2 datasets, the average embedding rate of the proposed algorithm reaches 3.162 bpp, 3.917 bpp, and 3.775 bpp, which is higher than the state-of-the-art algorithm of 0.263 bpp, 0.292 bpp, and 0.280 bpp, respectively.