时间序列可变尺度的时频特征求解及其分类
作者:
作者简介:

魏池璇(1997-),女,博士生,CCF学生会员,主要研究领域为数据挖掘,时间序列分类;原继东(1989-),男,博士,副教授,CCF专业会员,主要研究领域为数据挖掘,时间序列分类;王志海(1963-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为数据挖掘,时间序列;林钱洪(1996-),男,硕士,主要研究领域为机器学习,时间序列分类,广告投放优化.

通讯作者:

原继东,E-mail:yuanjd@bjtu.edu.cn

中图分类号:

TP301

基金项目:

国家自然科学基金(61771058);北京市自然科学基金(4214067)


Time Series Pattern Discovery and Classification with Variable Scales in Time-frequency Domains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对于许多实际应用来说,获取多个不同窗口尺度上的模式,有助于发现时间序列的不同规律性特征.同时,通过对时间序列时域和频域两方面的分析,有助于挖掘更多的知识.提出了一种新的基于可变尺度的时域频域辨别性特征挖掘方法以及应用于分类的算法.主要采用了不同尺度窗口、符号聚合近似技术以及符号傅里叶近似技术等,以有效地发掘时间序列不同尺度时域频域模式;与此同时,使用统计学方法挖掘部分最具辨别性的特征用于时间序列分类,有效地降低了算法时间复杂度.在多个数据集上的对比实验结果,说明了该算法具有较高的准确率;在真实数据集上的解析,表明了该算法具有更强的可解释性.同时,该算法可扩展应用到多维时间序列分类问题中.

    Abstract:

    For many real-world applications, capturing patterns at diverse window scales can help to discover the different periodicity of time series. At the same time, it is helpful to gain more knowledge by analyzing time series from both time-domain and frequency-domain. This study proposes a novel method to detect distinctive patterns at variable scales in time-domain and frequency-domain of time series, and discuss its application on classification. This method integrates multiple scales, the symbolic approximation and symbolic Fourier approximation techniques to explore multi-scales and multi-domain patterns efficiently in time series. Meanwhile, statistical method is applied to select some of the most discriminative patterns for time series classification, which also can effectively reduce time complexity of the algorithm. The experiments performed on various datasets demonstrate that the proposed method has higher accuracy and better interpretability. In addition, it can be extended to multi-dimensional time series easily.

    参考文献
    [1] Rajkomar A, Oren E, Chen K, et al.Scalable and accurate deep learning with electronic health records.NPJ Digital Medicine, 2018, 1(1):1-10.
    [2] Dilmi M, Barthes L, Mallet C, et al.Iterative multiscale dynamic time warping (IMs-DTW):A tool for rainfall time series comparison.Int'l Journal of Data Science and Analytics, 2019, 1-15.
    [3] Wang JD, Chen YQ, Hao SJ, et al.Deep learning for sensor-based activity recognition:A survey.Pattern Recognition Letters, 2019, 119:3-11.
    [4] Abanda A, Mori U, Lozano J.A review on distance based time series classification.Data Mining and Knowledge Discovery, 2019, 33(2):378-412.
    [5] Yuan JD, Wang ZH, Sun YG, et al.K-nearest neighbor classifier for complex time series.Ruan Jian Xue Bao/Journal of Software, 2017, 28(11):3002-3017(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5331.htm[doi:10.13328/j.cnki.jos.005331]
    [6] Yuan JD, Wang ZH, Han M.Shapelet pruning and shapelet coverage for time series classification.Ruan Jian Xue Bao/Journal of Software, 2015, 26(9):2311-2325(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/4702.htm[doi:10.13328/j.cnki.jos.004702]
    [7] Ma QL, Zhuang WQ, Li S, et al.Adversarial dynamic shapelet networks.In:Proc.of the AAAI Conf.on Artificial Intelligence.New York:AAAI, 2020.5069-5076.
    [8] Zhao HY, Pan ZS, Tao W.Regularized shapelet learning for scalable time series classification.Computer Networks, 2020, 173:107171.
    [9] Li GL, Yan WH, Wu ZD.Discovering shapelets with key points in time series classification.Expert Systems with Applications, 2019, 132:76-86.
    [10] Kramakum C, Rathanmanon T, Waiyamai K.Information gain aggregation-based approach for time series shapelets discovery.In:Proc.of the 10th Int'l Conf.on Knowledge and Systems Engineering.Vietnam:IEEE, 2018.97-101.
    [11] Ji C, Zhao C, Liu SJ, et al.A fast shapelet selection algorithm for time series classification.Computer Networks, 2019, 148:231-240.
    [12] Rakthanmanon T, Keogh E.Fast shapelets:A scalable algorithm for discovering time series shapelets.In:Proc.of the 2013 SIAM Int'l Conf.on Data Mining.Society for Industrial and Applied Mathematics, 2013.668-676.
    [13] Lin J, Khade R, Li Y.Rotation-invariant similarity in time series using bag-of-patterns representation.Journal of Intelligent Information Systems, 2012, 39(2):287-315.
    [14] Lin J, Keogh E, Wei L, et al.Experiencing SAX:A novel symbolic representation of time series.Data Mining and Knowledge Discovery, 2007, 15(2):107-144.[doi:10.1007/s10618-007-0064-z]
    [15] Senin P, Malinchik S.SAX-VSM:Interpretable time series classification using sax and vector space model.In:Proc.of the 13th Int'l Conf.on Data Mining.IEEE, 2013.1175-1180.[doi:10.1109/ICDM.2013.52]
    [16] Le Nguyen T, Gsponer S, Ifrim G.Time series classification by sequence learning in all-subsequence space.In:Proc.of the 2017 IEEE Int'l Conf.on Data Engineering.San Diego:IEEE, 2017.947-958.[doi:10.1109/ICDE.2017.142]
    [17] Schäfer P.The BOSS is concerned with time series classification in the presence of noise.Data Mining and Knowledge Discovery, 2015, 29(6):1505-1530.[doi:10.1007/s10618-014-0377-7]
    [18] Schäfer P, Högqvist M.SFA:A symbolic Fourier approximation and index for similarity search in high dimensional datasets.In:Proc.of the 15th Int'l Conf.on Extending Database Technology.Berlin:ACM, 2012.516-527.
    [19] Middlehurst M, Vickers W, Bagnall A.Scalable dictionary classifiers for time series classification.In:Proc.of the Int'l Conf.on Intelligent Data Engineering and Automated Learning.Cham:Springer, 2019.11-19.
    [20] Large J, Bagnall A, Malinowski S, et al.On time series classification with dictionary-based classifiers.Intelligent Data Analysis, 2019, 23(5):1073-1089.
    [21] Schäfer P.Scalable time series classification.Data Mining and Knowledge Discovery, 2016, 30(5):1273-1298.
    [22] Schäfer P, Leser U.Fast and accurate time series classification with weasel.In:Proc.of the 2017 ACM on Conf.on Information and Knowledge Management.New York:ACM, 2017.637-646.
    [23] Zhang W, Wang ZH, Yuan JD, et al.Time series discriminative feature dictionary construction algorithm.Ruan Jian Xue Bao/Journal of Software, 2020, 31(10):3216-3237(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5852.htm[doi:10.13328/j.cnki.jos.005852]
    [24] Yeh CCM, Kavantzas N, Keogh E.Matrix profile VI:Meaningful multidimensional motif discovery.In:Proc.of the 2017 IEEE Int'l Conf.on Data Engineering.San Diego:IEEE, 2017.565-574.
    [25] Li X, Lin J.Linear time complexity time series classification with bag-of-pattern-features.In:Proc.of the 2017 IEEE Int'l Conf.on Data Mining.IEEE, 2017.277-286.
    [26] Qamar AM, Alassaf M.Improving sentiment analysis of Arabic tweets by one-way ANOVA.Journal of King Saud University-Computer and Information Sciences, 2020.
    [27] Grabocka J, Schilling N, Wistuba M, et al.Learning time-series shapelets.In:Proc.of the 20th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM, 2014.392-401.
    [28] Bostrom A, Bagnall A.Binary shapelet transform for multiclass time series classification.In:Proc.of the Int'l Conf.on Big Data Analytics and Knowledge Discovery.Cham:Springer, 2015.257-269.
    [29] Bagnall A, Lines J, Bostrom A, et al.The great time series classification bakeoff:A review and experimental evaluation of recent algorithmic advances.Data Mining and Knowledge Discovery, 2017, 31(3):606-660.
    [30] Demsar J.Statistical comparisons of classifiers over multiple datasets.Journal of Machine Learning Research, 2006, 7(1):1-30.
    [31] Le Nguyen T, Gsponer S, Ilie I, et al.Interpretable time series classification using linear models and multi-resolution multi-domain symbolic representations.Data Mining and Knowledge Discovery, 2019, 33(4):1183-1222.
    [32] Zheng Y, Liu Q, Chen E, et al.Time series classification using multi-channels deep convolutional neural networks.In:Proc.of the Int'l Conf.on Web-Age Information Management.Cham:Springer, 2014.298-310.
    [33] Wang Z, Yan W, Oates T.Time series classification from scratch with deep neural networks:A strong baseline.In:Proc.of the 2017 Int'l Joint Conf.on Neural Networks.Anchorage:IEEE, 2017.1578-1585.
    [34] Cui Z, Chen W, Chen Y.Multi-scale convolutional neural networks for time series classification.arXiv:1603.06995, 2016.
    [35] Zhao BD, Lu HZ, Chen SF, et al.Convolutional neural networks for time series classification.Journal of Systems Engineering and Electronics, 2017, 28(1):162-169.
    [36] Tanisaro P, Heidemann G.Time series classification using time warping invariant echo state networks.In:Proc.of the 15th IEEE Int'l Conf.on Machine Learning and Applications.IEEE, 2016.831-836.
    [37] Bagnall A, Lines J, Hills J, et al.Time-series classification with COTE:The collective of transformation-based ensembles.IEEE Trans.on Knowledge and Data Engineering, 2015, 27(9):2522-253.
    附中文参考文献:
    [5] 原继东, 王志海, 孙艳歌, 等.面向复杂时间序列的k近邻分类器.软件学报, 2017, 28(11):3002-3017.http://www.jos.org.cn/1000-9825/5331.htm[doi:10.13328/j.cnki.jos.005331]
    [6] 原继东, 王志海, 韩萌.基于Shapelet剪枝和覆盖的时间序列分类算法.软件学报, 2015, 26(9):2311-2325.http://www.jos.org.cn/1000-9825/4702.htm[doi:10.13328/j.cnki.jos.004702]
    [23] 张伟, 王志海, 原继东, 等.一种时间序列鉴别性特征字典构建算法.软件学报, 2020, 31(10):3216-3237.http://www.jos.org.cn/1000-9825/5852.htm[doi:10.13328/j.cnki.jos.005852]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏池璇,王志海,原继东,林钱洪.时间序列可变尺度的时频特征求解及其分类.软件学报,2022,33(12):4411-4428

复制
分享
文章指标
  • 点击次数:1760
  • 下载次数: 2998
  • HTML阅读次数: 3028
  • 引用次数: 0
历史
  • 收稿日期:2020-08-12
  • 最后修改日期:2020-11-16
  • 在线发布日期: 2022-12-03
  • 出版日期: 2022-12-06
文章二维码
您是第19785995位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号