软硬件节能原理深度融合之绿色异构调度算法
作者:
作者单位:

作者简介:

王静莲(1979-),女,博士,副教授,主要研究领域为异构集群体系,云调度中间件与分布式人工智能等多学科交叉方向.
龚斌(1964-),男,博士,教授,博士生导师,主要研究领域为异构集群体系,云调度中间件与分布式人工智能等多学科交叉方向.
刘弘(1955-),女,博士,教授,博士生导师,CCF高级会员,主要研究领域为群体智能算法,协同计算机多agent系统的理论与应用.
李少辉(1978-),男,讲师,主要研究领域为异构集群体系,云调度中间件与布式人工智能等多学科交叉方向.

通讯作者:

王静莲,E-mail:wjljing@163.com

中图分类号:

TP311

基金项目:

国家自然科学基金(61702248,61070017,61272094);国家高技术研究发展计划(863)(2006AA01A113,2012AA01A306)


Green Heterogeneous Scheduling Algorithm Through Deep Integration of Hardware and Software Energy Saving Principles
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61702248, 61070017, 61272094); National High Technology Research and Development Program of China (863) (2006AA01A113, 2012AA01A306)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    虚拟云高性能向高效能计算演进,已是环境保护、人类可持续发展的迫切需求.然而目前,一方面,硬件级物理节能空间需要适度延展;另一方面,以遗传或人工免疫算法为代表的元启发式调度中间件大多存在进化动力不足,以致收敛性和分布性冲突难平衡等瓶颈.事实上,每个候选解(调度方案)都蕴含一定的物理反馈效应,而拟配资源的非线性和异构性,则意味着不同方案间与能效相关的实时动态反馈的巨大差异化.因此,尊重科学规律,巧妙地借力于硬件节能原理,给算法优化动力注入新能量,并进一步增强软件方法的节能主导性,是本文研究方法;继而提出一种着眼于软硬件节能原理深度融合的新的绿色异构调度算法(GHSA_di/Ⅱ),以多角度、全方位提升元启发式算法之协同进化模拟的内驱力.大量仿真实验结果显示:无论对于数据密集型还是计算密集型实例,GHSA_di/Ⅱ算法较其他3种元启发式异构调度算法,在整体性能、节能降耗以及可扩展性等方面都具明显优势.

    Abstract:

    The computing evolution from high performance to high efficiency of the virtual cloud is an urgent need of environmental protection and human sustainable developments. However, on the one hand, nowadays there are moderate extension demands of the hardware energy-saving space; on the other hand, meta-heuristics scheduling algorithms, such as genetic algorithms and artificial immune algorithms, underperform in the optimization dynamics with the balance conflict between convergence and distribution. In fact, there are some inevitable and logical relationships between every candidate solution (scheduling scheme) and some physical feedback; and nonlinearity and heterogeneity of the allocated resources means a big discrepancy in the feedback effects between different scheduling schemes, such as the energy-efficiencies related. Therefore, the research methods of this study are to respect the scientific laws, and to ingeniously follow the hardware energy-saving principle, in order for injecting new energy into the algorithm optimization power, and also for further enhancing the energy-saving dominance of software methods. Then, the green heterogeneous scheduling algorithm through deep integration of hardware and software energy saving principles, is presented in this paper (i.e., GHSA_di/II), with the multi angle and all-round improvements of the internal drive of co-evolutionary simulation in the meta-heuristics algorithms. The experimental results show that compared with the other three meta-heuristic heterogeneous scheduling algorithms, GHSA_di/II algorithm has obvious advantages in overall performance, energy saving, and scalability, for both data intensive and computing intensive instances.

    参考文献
    相似文献
    引证文献
引用本文

王静莲,龚斌,刘弘,李少辉.软硬件节能原理深度融合之绿色异构调度算法.软件学报,2021,32(12):3768-3781

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-15
  • 最后修改日期:2020-07-06
  • 录用日期:
  • 在线发布日期: 2021-12-02
  • 出版日期: 2021-12-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号