子图相似性的恶意程序检测方法
CSTR:
作者:
作者单位:

作者简介:

汪洁(1980-),女,博士,副教授,CCF专业会员,主要研究领域为信息与网络安全.
王长青(1994-),男,硕士,主要研究领域为恶意程序检测.

通讯作者:

汪洁,E-mail:jwang@csu.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61202495)


Malware Detection Method Based on Subgraph Similarity
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61202495)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    动态行为分析是一种常见的恶意程序分析方法,常用图来表示恶意程序系统调用或资源依赖等,通过图挖掘算法找出已知恶意程序样本中公共的恶意特征子图,并通过这些特征子图对恶意程序进行检测.然而这些方法往往依赖于图匹配算法,且图匹配不可避免计算慢,同时,算法中还忽视了子图之间的关系,而考虑子图间的关系有助于提高模型检测效果.为了解决这两个问题,提出了一种基于子图相似性恶意程序检测方法,即DMBSS.该方法使用数据流图来表示恶意程序运行时的系统行为或事件,再从数据流图中提取出恶意行为特征子图,并使用“逆拓扑标识”算法将特征子图表示成字符串,字符串蕴含了子图的结构信息,使用字符串替代图的匹配.然后,通过神经网络来计算子图间的相似性即将子图结构表示成高维向量,使得相似子图在向量空间的距离也较近.最后,使用子图向量构建恶意程序的相似性函数,并在此基础上,结合SVM分类器对恶意程序进行检测.实验结果显示,与其他方法相比,DMBSS在检测恶意程序时速度较快,且准确率较高.

    Abstract:

    Dynamic behavior analysis is a common method of malware detection. It uses graphs to represent malware’s system calls or resource dependencies. It uses graph mining algorithms to find common malicious feature subgraphs in known malware samples, and detect unknown programs through these features. However, these methods often rely on the graph matching algorithm, and the inevitable calculation of the graph matching is slow, and the relationship between the subgraphs is also neglected in the algorithm. It can improve the detection accuracy of the model if the subgraphs’ relationship is considered. In order to solve these two problems, a sub-graph similarity malware detection method called DMBSS is proposed. It uses the data flow graph to represent the system behavior or event of the running malicious program, and then extracts the malicious behavior feature subgraph from the data flow graph, and uses “inverse topology identification” algorithm to represent the feature subgraph as a string, and the string implied the structural information of the subgraph, using a string instead of the matching of the graph. The neural network is then used to calculate the similarity between the subgraphs and to represent the subgraph structure as a high dimensional vector, so that the similar subgraphs’ distance is also shorter in the vector space. Finally, the subgraph vector is used to construct the similarity function of the malicious program, and based on this, the SVM classifier is used to detect the malicious program. The experimental results show that compared with other methods, DMBSS is faster in detecting malicious programs and has higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

汪洁,王长青.子图相似性的恶意程序检测方法.软件学报,2020,31(11):3436-3447

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-10
  • 最后修改日期:2019-03-23
  • 录用日期:
  • 在线发布日期: 2020-11-07
  • 出版日期: 2020-11-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号