面向移动节点定位的传感器网络预唤醒策略
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the Aero Science and Technology Foundation of China under Grant No.05E551010 (中国航空支撑科技基金); the Key Subject Foundation of Beijing of China under Grant No.XK100060423 (北京市重点学科基金); the Graduate Practice and Innovation Foundation of BUAA of China under Grant No.2007.20 (北京航空航天大学研究生创新实践基金)


Proactive Wakeup and Sleep Scheduling Scheme for Localizing Mobile Sensors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当无线传感器网络对移动节点进行定位时,锚节点可能会因为处于休眠状态而没有响应移动节点的定位请求,从而导致定位失败.提出一种基于预唤醒机制的动态功耗控制策略P-SWIM,该策略提前通知移动节点周边的锚节点进入全勤的工作方式,而网络内其他锚节点则仍然处于低功耗的工作方式.仿真实验结果表明,移动节点定位方法采用P-SWIM相比于采用静态功耗控制策略(RIS和GAF)能够显著地提高定位性能,且P-SWIM引入的功耗也是3种策略中最低的.此外,通过大量的仿真实验,评估了调节3种策略的各项参数对移动节点定位方法性能的影响,为在实际应用中高效的部署网络提供了参考方案.

    Abstract:

    When localizing a mobile node in sensor networks, it is possible that a seed node is passed by the mobile node during its sleeping mode, which might lead to failed localization. This paper proposes a dynamic node scheduling scheme P-SWIM based on proactive wakeup and sleep. In P-SWIM, each seed is proactively notified if a mobile node is moving toward it. Hence, only these seeds remain active in full duty when the mobile node passes by them, while the other seeds still stay in sleeping mode. Simulation results indicate that localization algorithms based on P-SWIM can achieve better localization performance than those based on the other two static node scheduling schemes, RIS and GAF. Moreover, P-SWIM incurs least running overhead to the network overall power consumption among the three schemes. In addition, the paper evaluates the effect of node scheduling schemes on localization performance by tuning the parameters of each scheme, which presents guidelines for efficient network deployment for mobile sensor positioning applications.

    参考文献
    相似文献
    引证文献
引用本文

刘玉恒,陈真勇,吴 晶,熊 璋.面向移动节点定位的传感器网络预唤醒策略.软件学报,2009,20(1):164-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-12-09
  • 最后修改日期:2008-05-06
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号