面向知识图谱的知识推理研究进展
CSTR:
作者:
作者单位:

作者简介:

官赛萍(1991-),女,福建三明人,学士,主要研究领域为知识图谱;靳小龙(1976-),男,博士,研究员,CCF高级会员,主要研究领域为知识图谱,社会计算,大数据;贾岩涛(1983-),男,博士,副研究员,CCF专业会员,主要研究领域为开放知识计算,数据挖掘;王元卓(1978-),男,博士,研究员,博士生导师,CCF杰出会员,主要研究领域为网络大数据分析,开放知识计算,社交网络演化计算,网络与信息安全;程学旗(1971-),男,博士,研究员,博士生导师,CCF会士,主要研究领域为网络科学与社会计算,互联网搜索与挖掘,网络信息安全,分布式系统,大型仿真平台.

通讯作者:

靳小龙,E-mail:jinxiaolong@ict.ac.cn

中图分类号:

基金项目:

国家重点研发计划(2016YFB1000902,2017YFB1002302);国家自然科学基金(61772501,61572473,61572469,91646120)


Knowledge Reasoning Over Knowledge Graph: A Survey
Author:
Affiliation:

Fund Project:

National Key Research and Development Program (2016YFB1000902, 2017YFB1002302); National Natural Science Foundation of China (61772501, 61572473, 61572469, 91646120)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着互联网技术和应用模式的迅猛发展,引发了互联网数据规模的爆炸式增长,其中包含大量有价值的知识.如何组织和表达这些知识,并对其进行深入计算和分析备受关注.知识图谱作为丰富直观的知识表达方式应运而生.面向知识图谱的知识推理是知识图谱的研究热点之一,已在垂直搜索、智能问答等应用领域发挥了重要作用.面向知识图谱的知识推理旨在根据已有的知识推理出新的知识或识别错误的知识.不同于传统的知识推理,由于知识图谱中知识表达形式的简洁直观、灵活丰富,面向知识图谱的知识推理方法也更加多样化.将从知识推理的基本概念出发,介绍近年来面向知识图谱知识推理方法的最新研究进展.具体地,根据推理类型划分,将面向知识图谱的知识推理分为单步推理和多步推理,根据方法的不同,每类又包括基于规则的推理、基于分布式表示的推理、基于神经网络的推理以及混合推理.详细总结这些方法,并探讨和展望面向知识图谱知识推理的未来研究方向和前景.

    Abstract:

    In recent years, the rapid development of Internet technology and Web applications has triggered the explosion of various data on the Internet, which generates a large amount of valuable knowledge. How to organize, represent and analyze these knowledge has attracted much attention. Knowledge graph was thus developed to organize these knowledge in a semantical and visualized manner. Knowledge reasoning over knowledge graph then becomes one of the hot research topics and plays an important role in many applications such as vertical search and intelligent question-answer. The goal of knowledge reasoning over knowledge graph is to infer new facts or identify erroneous facts according to existing ones. Unlike traditional knowledge reasoning, knowledge reasoning over knowledge graph is more diversified, due to the simplicity, intuitiveness, flexibility, and richness of knowledge representation in knowledge graph. Starting with the basic concept of knowledge reasoning, this paper presents a survey on the recently developed methods for knowledge reasoning over knowledge graph. Specifically, the research progress is reviewed in detail from two aspects:One-Step reasoning and multi-step reasoning, each including rule based reasoning, distributed embedding based reasoning, neural network based reasoning and hybrid reasoning. Finally, future research directions and outlook of knowledge reasoning over knowledge graph are discussed.

    参考文献
    相似文献
    引证文献
引用本文

官赛萍,靳小龙,贾岩涛,王元卓,程学旗.面向知识图谱的知识推理研究进展.软件学报,2018,29(10):2966-2994

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-20
  • 最后修改日期:2017-11-08
  • 录用日期:
  • 在线发布日期: 2018-02-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号