基于边采样的网络表示学习模型
CSTR:
作者:
作者单位:

作者简介:

陈丽(1992-),女,湖南衡阳人,硕士生,主要研究领域为Web挖掘,数据管理;朱辉(1983-),男,工程师,主要研究领域为电力金融,互联网金融,项目管理;朱裴松(1994-),男,博士,硕士生,主要研究领域为Web挖掘,数据管理;周静(1984-),男,政工师,主要研究领域为智能电网,信息通信,大数据,项目管理;钱铁云(1970-),女,博士,教授,博士生导师,CCF专业会员,主要研究领域为Web挖掘,数据管理.

通讯作者:

钱铁云,E-mail:qty@whu.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金(61572376);111计划(B07037)


Edge Sampling Based Network Embedding Model
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61572376);111 Project (B07037)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,以微博、微信、Facebook为代表的社交网络不断发展,网络表示学习引起了学术界和工业界的广泛关注.传统的网络表示学习模型利用图矩阵表示的谱特性,由于其效率低下、效果不佳,难以应用到真实网络中.近几年,基于神经网络的表示学习方法因算法效率高、较好地保存了网络结构信息,逐渐成为网络表示学习的主流算法.网络中的节点因为不同类型的关系而相互连接,这些关系里隐藏了非常丰富的信息(如兴趣、家人),但所有现存方法都没有区分节点之间边的关系类型.提出一种能够编码这种关系信息的无监督网络表示学习模型NEES (network embedding via edge sampling).首先,通过边采样得到能够反映边关系类型信息的边向量;其次,利用边向量为图中每个节点学习到一个低维表示.分别在几个真实网络数据上进行了多标签分类、边预测等任务,实验结果表明:在绝大多数情况下,该方法都表现最优.

    Abstract:

    With the development of online social networks such as Weibo, WeChat and Facebook, network representation learning has drawn widespread research interests from academia and industry. Traditional network embedding models exploit the spectral properties of matrix representations of graphs, which suffer from both computation and performance bottlenecks when applied to real world networks. Recently, a lot of neural network based embedding models are presented in the literature. They are computationally efficient and preserve the network structure information well. The vertices in the network are connected to various types of relations, which convey rich information. However, such important information are neglected by all existing models. This paper proposes NEES, an unsupervised network embedding model to encode the relations. It first obtains the edge vectors by edge sampling to reflect the relation types of the edges. Then, it uses the edge vectors to learn a low dimension representation for each node in the graph. Extensive experiments are conducted on several social networks and one citation network. The results show that NEES model outperforms the state-of-the-art methods in multi-label classification and link prediction tasks. NEES is also scalable to large-scale networks in the real world.

    参考文献
    相似文献
    引证文献
引用本文

陈丽,朱裴松,钱铁云,朱辉,周静.基于边采样的网络表示学习模型.软件学报,2018,29(3):756-771

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-10
  • 最后修改日期:2017-09-05
  • 录用日期:
  • 在线发布日期: 2017-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号