基于多任务学习的中文事件抽取联合模型
CSTR:
作者:
作者单位:

作者简介:

贺瑞芳(1979-),女,山西忻州人,博士,副教授,CCF专业会员,主要研究领域为自然语言处理,社会媒体挖掘,机器学习;段绍杨(1993-),男,硕士生,主要研究领域为中英文事件抽取,深度学习,条件随机场.

通讯作者:

贺瑞芳,E-mail:rfhe@tju.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61472277);天津市自然科学基金(18JCYBJC15500)


Joint Chinese Event Extraction Based Multi-task Learning
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61472277); Tianjin Natural Science Foundation of China (18JCYBJC15500)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    事件抽取旨在从非结构化的文本中提取人们感兴趣的信息,并以结构化的形式呈现给用户.当前,大多数中文事件抽取系统采用连续的管道模型,即:先识别事件触发词,后识别事件元素.其容易产生级联错误,且处于下游的任务无法将信息反馈至上游任务,辅助上游任务的识别.将事件抽取看作序列标注任务,构建了基于CRF多任务学习的中文事件抽取联合模型.针对仅基于CRF的事件抽取联合模型的缺陷进行了两个扩展:首先,采用分类训练策略解决联合模型中事件元素的多标签问题(即:当一个事件提及中包含多个事件时,同一个实体往往会在不同的事件中扮演不同的角色).其次,由于处于同一事件大类下的事件子类,其事件元素存在高度的相互关联性.为此,提出采用多任务学习方法对各事件子类进行互增强的联合学习,进而有效缓解分类训练后的语料稀疏问题.在ACE 2005中文语料上的实验证明了该方法的有效性.

    Abstract:

    Event extraction aims to extract the interesting and structured information from unstructured text. Most Chinese event extraction methods use a continuous pipeline model which first identify event trigger word, and then identify the event arguments. Thus, it is prone to produce cascading errors, and the information contained in downstream task cannot be fed back to the upstream task. In this study, event extraction is considered as a sequence labeling task, and a multi-task learning with CRF enhanced Chinese event extraction model is proposed. Two extensions on the CRF based event extraction model are performed:(1) the separate training strategy to solve multi-label problem for an event argument in the joint model (i.e., when an event scope includes multiple events, the same entity tends to play different roles in different events); (2) considered event arguments of sub-events under the same class have the high correlation, a multi-task learning approach is proposed to jointly learn sub-events, which can alleviate the corpus sparsity to some extent. The experiment results on ACE 2005 Chinese corpus show the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

贺瑞芳,段绍杨.基于多任务学习的中文事件抽取联合模型.软件学报,2019,30(4):1015-1030

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-22
  • 最后修改日期:2017-06-02
  • 录用日期:
  • 在线发布日期: 2019-04-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号