用于阿尔茨海默病诊断的权值分布特征学习
CSTR:
作者:
作者单位:

作者简介:

程波(1982-),男,重庆人,博士,副教授,主要研究领域为机器学习,模式识别,医学图像分析;张道强(1978-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为机器学习,模式识别,数据挖掘,医学图像分析;丁毅(1993-),男,硕士,CCF学生会员,主要研究领域为机器学习,强化学习,计算金融.

通讯作者:

张道强,E-mail:dqzhang@nuaa.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61602072,61422204,61473149,61732006,61573023);重庆市基础研究与前沿探索项目(cstc2016jcyjA0063,cstc2018jcyjAX0502,cstc2014jcyjA40035,cstc2014jcyjA1316,cstc2016jcyjA0521);重庆市教委科学技术研究(KJ1501014,KJ1601003,KJ1710248,KJ1401010,KJ1601015);重庆市高校市级重点实验室资助项目([2017]3)


Feature Learning of Weight-distribution for Diagnosis of Alzheimer's Disease
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61602072, 61422204, 61473149, 61732006, 61573023); Chongqing Cutting-edge and Applied Foundation Research Program (cstc2016jcyjA0063, cstc2018jcyjAX0502, cstc2014jcyjA40035, cstc2014jcyjA1316, cstc2016jcyjA0521); Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1501014, KJ1601003, KJ1710248, KJ1401010, KJ1601015); Chongqing Municipal Key Laboratory of Institutions of Higher Education ([2017]3)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前基于机器学习的早期阿尔茨海默病(AD)诊断中有标记训练样本不足的问题,提出一种基于多模态特征数据的权值分布稀疏特征学习方法,并将其应用于早期阿尔茨海默病的诊断.具体来说,该诊断方法主要包括两大模块:基于权值分布的Lasso特征选择模型(WDL)和大间隔分布分类机模型(LDM).首先,为了获取多模态特征之间的数据分布信息,对传统Lasso模型进行改进,引入权值分布正则化项,从而构建出基于权值分布的Lasso特征选择模型;然后,为了有效地利用多模态特征之间的数据分布信息,以保持多模态特征之间的互补性,直接采用大间隔分布学习算法训练分类器.选取国际阿尔茨海默症数据库(ADNI)中202个多模态特征的被试者样本进行实验,分类AD最高平均精度为97.5%,分类轻度认知功能障碍(MCI)最高平均精度为83.1%,分类轻度认知功能障碍转化为AD(pMCI)最高平均精度为84.8%.实验结果表明,所提WDL特征学习方法可从串联的多模态特征学到性能更优的特征子集,并能根据权值分布获取多模态特征之间的数据分布信息,从而提高早期阿尔茨海默病诊断的性能.

    Abstract:

    In the field of medical imaging analysis using machine learning, the challenge is lack of training sample. In order to solve the problem, a weight-distribution based Lasso (Least absolute shrinkage and selection operator) feature learning model is proposed and applied to early diagnosis of Alzheimer's Disease (AD). Specifically, the proposed diagnosis method is consisted of two components:weight-distribution based Lasso feature selection (WDL) and large margin distribution machine (LDM) for classification. Firstly, in order to capture data distribution information among multimodal features, the WDL feature selection model was built, to improve on the conventional Lasso model via adding a regularization item of weight-distribution. Secondly, in order to achieve better generalization and accuracy on classification, and also to keep complementary information among multimodal features, the LDM algorithm is used for the training of the classifier. To evaluate the effectiveness of the proposed learning model, 202 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with multimodal features were employed. Experimental results on the ADNI database show that it can recognize AD from Normal Controls (NC) with 97.5% accuracy, recognize Mild Cognitive Impairment (MCI) from NC with 83.1% accuracy, and recognize progressive MCI (pMCI) patients from stable MCI (sMCI) ones with 84.8% accuracy, which demonstrate that it can significantly improve the performance of early AD diagnosis and achieve feature ranking in terms of discrimination via optimized weight vector.

    参考文献
    相似文献
    引证文献
引用本文

程波,丁毅,张道强.用于阿尔茨海默病诊断的权值分布特征学习.软件学报,2019,30(4):1002-1014

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-05
  • 最后修改日期:2017-01-28
  • 录用日期:
  • 在线发布日期: 2019-04-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号