随机正则(k,r)-SAT问题的可满足临界
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61262006,61463044,61462001);贵州省科技厅联合基金(LKQS201313)


Satisfiability Threshold of the Regular Random (k,r)-SAT Problem
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61262006, 61463044, 61462001); Science and Technology Foundation of Guizhou Province of China (LKQS201313)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究k-SAT问题实例中每个变元恰好出现r=2s次,且每个变元对应的正、负文字都出现s次的严格随机正则(k,r)-SAT问题.通过构造一个特殊的独立随机实验,结合一阶矩方法,给出了严格随机正则(k,r)-SAT问题可满足临界值的上界.由于严格正则情形与正则情形的可满足临界值近似相等,因此得到了随机正则(k,r)-SAT问题可满足临界值的新上界.该上界不仅小于当前已有的随机正则(k,r)-SAT问题的可满足临界值上界,而且还小于一般的随机k-SAT问题的可满足临界值.因此,这也从理论上解释了在相变点处的随机正则(k,r)-SAT问题实例通常比在相应相变点处同规模的随机k-SAT问题实例更难满足的原因.最后,数值分析结果验证了所给上界的正确性.

    Abstract:

    This article studies the strictly regular (k,r)-SAT problem by restricting the k-SAT problem instances, where each variables occurs precisely r=2s times and each of the positive and negative literals occurs precisely s times. By constructing a special independent random experiment, the study derives an upper bound on the satisfiability threshold of the strictly regular random (k,r)-SAT problem via the first moment method. Based on the fact that the satisfiability threshold of the strictly regular and the regular random (k,r)-SAT problems are approximately equal, a new upper bound on the threshold of the regular random (k,r)-SAT problem is obtained. This new upper bound is not only below the current best known upper bounds on the satisfiability threshold of the regular random (k,r)-SAT problem, but also below the satisfiability threshold of the uniform random k-SAT problem. Thus, it is theoretically explained that in general the regular random (k,r)-SAT instances are harder to satisfy at their phase transition points than the uniform random k-SAT problem at the corresponding phase transition points with same scales. Finally, numerical results verify the validity of our new upper bound.

    参考文献
    相似文献
    引证文献
引用本文

周锦程,许道云,卢友军.随机正则(k, r)-SAT问题的可满足临界.软件学报,2016,27(12):2985-2993

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-10-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号