基于双极偏好占优的高维目标进化算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61070135); 国家社会科学基金(10GBL095); 浙江省自然科学基金(R2080100)


Many-Objective Evolutionary Algorithm Based on Bipolar Preferences Dominance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高维目标优化是目前多目标优化领域的研究热点和难点.提出一种占优机制,即双极偏好占优用于处理高维目标优化问题.该占优机制同时考虑决策者的正偏好和负偏好信息,在非支配解之间建立了更加严格的占优关系,能够有效减少种群中非支配解的比例,引导算法向靠近正偏好同时远离负偏好的Pareto最优区域收敛.为检验该方法的有效性,将双极偏好占优融入NSGA-Ⅱ中,形成算法2p-NSGA-Ⅱ,并在2到15目标标准测试函数上进行测试,得到了良好的实验结果.同时,将所提出的占优机制与目前该领域的两种占优机制g占优和r占优进行性能对比,实验结果表明,2p-NSGA-Ⅱ算法无论是在求解精度还是运行效率上,整体上均优于g-NSGA-Ⅱ和r-NSGA-Ⅱ.

    Abstract:

    Many-Objective optimization is a difficulty for classical multi-objective evolutionary algorithm and has gained great attention during the past few years. In this paper, a dominance relation named bipolar preferences dominance is proposed for addressing many-objective problem. The proposed dominance relation considers the decision maker's positive preference and negative preference simultaneously and creates a strict dominance relation among the non-dominated solutions, which has ability to reduce the proportion of non-dominated solutions in population and lead the race to the Pareto optimal area, which is close to the positive preference and far away from negative preference. To demonstrate its effectiveness, the proposed approach was integrated into NSGA-Ⅱ to be a new algorithm denoted by 2p-NSGA-Ⅱ and tested on a benchmark of two to fifteen-objective test problems. Good results were obtained. The proposed dominance relation was also compared to g-dominance and r-dominance which was the most recently proposed dominance relation, the results of comparative experiment showed 2p-NSGA-Ⅱ was superior to g-NSGA-Ⅱ and r-NSGA-Ⅱ on a whole, no matter the accuracy of obtained solutions or the efficiency of algorithm.

    参考文献
    相似文献
    引证文献
引用本文

邱飞岳,吴裕市,邱启仓,王丽萍.基于双极偏好占优的高维目标进化算法.软件学报,2013,24(3):476-489

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-11-10
  • 最后修改日期:2012-05-29
  • 录用日期:
  • 在线发布日期: 2013-03-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号