特征采样和特征融合的子图像人脸识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60973097, 61035003); 南京航空航天大学基本科研业务费专项科研项目(ns2010233)


Sub-Image Method Based on Feature Sampling and Feature Fusion for Face Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于特征采样和特征融合的子图像人脸识别方法(RS-SpCCA).首先,对子图像进行特征采样;然后,将全局特征和采样后的特征使用CCA 进行信息融合,以获取包含全局特征和局部特征的相关特征;最后,在相关特征上构建分量分类器.在该方法中,特征采样是为了构建更多且多样的分量分类器;而引入特征融合思想是为了充分利用图像的全局特征.AR,Yale 和ORL 这3 个数据库上的实验结果表明,基于特征采样和特征融合的子图像方法(RS-SpCCA)优于单纯的信息融合方法(SpCCA)和特征采样方法(Semi-RS).

    Abstract:

    In this paper, a sub-image method based on feature sampling and feature fusion (called as RS_SpCCA) is proposed. RS_SpCCA first performs a random subspace method in sub-images which are partitioned in a deterministic way. Then, the method obtains correlation features by fusing sampled features and global feature extracted by certain feature extraction method and finally, constructs component classifiers on corrleation features. In this method, the purpose of sampling feature is to construct more diverse component classifiers, and the purpose of the fusing feature is to make good use of the global information. The experimental results on AR, Yale and ORL three face image databases show that sub-image method based on feature sampling and feature fusion (RS_SpCCA) is superior to both SpCCA and Semi-RS which only use feature sampling or feature fusion.

    参考文献
    相似文献
    引证文献
引用本文

朱玉莲,陈松灿.特征采样和特征融合的子图像人脸识别方法.软件学报,2012,23(12):3209-3220

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-08-02
  • 最后修改日期:2012-02-15
  • 录用日期:
  • 在线发布日期: 2012-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号