图像压缩中的快速方向离散余弦变换
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61072118); 国防科学技术大学预研基金


Fast Directional Discrete Cosine Transforms Based Image Compression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的二维DCT(discrete cosine transform)无法稀疏表示除水平或垂直方向以外的边缘,而具有强方向表示能力的方向预测离散余弦变换(directional prediction DCT,简称DPDCT)计算复杂度又过高.针对这些问题,提出了一种快速方向离散余弦变换(fast directional discrete cosine transform,简称FDDCT).该算法沿给定的方向模式进行变换,避免了DPDCT 中的插值运算,可以快速、稀疏地表示图像中各向异性边缘信息.此外,FDDCT 通过设计块边界提升,在进一步集中边缘能量的同时保证了算法的完全重构.实验结果表明,FDDCT 计算复杂度不超过DCT 的1.4 倍;采用同样的编码方法,基于FDDCT 的压缩图像与基于DCT 以及DPDCT 的压缩图像相比,峰值信噪比可提高0.4dB ~1.6dB,而且边缘细节更加清晰、完整.

    Abstract:

    The traditional discrete cosine transform (DCT) can only sparsely represent the horizontal and vertical edges in images. The computation complexity of directional prediction DCT (DPDCT), which has the ability to represent more directions, is much higher. To overcome these shortcomings, the fast directional discrete cosine transforms (FDDCT) is proposed in this paper, in which the transformation is performed on the predefined direction mode. Compared with DPDCT, no interpolation is needed in FDDCT, so FDDCT can sparsely represent the anisotropic edges in much faster images. A special lifting algorithm is designed between adjacent blocks to ensure the perfect reconstruction, which compacts energy in edges lying across the blocks. The experimental results show that the computation of FDDCT is no more than 1.4 times that of DCT’s. Coding with the same set partition method, PSNR compressed images that are combined with FDDCT are 0.4~1.6dB higher than those with DCT and DPDCT. Also, the edges and the details in the images are much clearer and less distortion exists.

    参考文献
    相似文献
    引证文献
引用本文

陈波,王红霞,成礼智.图像压缩中的快速方向离散余弦变换.软件学报,2011,22(4):826-832

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-02-15
  • 最后修改日期:2009-07-06
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号