基于贝叶斯网络的半监督聚类集成模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.61003142 (国家自然科学基金); the Program of the Ministry of Railways of China under Grant Nos.2009X010-A, 2009X010-B (国家铁道部资助项目)


Semi-Supervised Cluster Ensemble Model Based on Bayesian Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    已有的聚类集算法基本上都是非监督聚类集成算法,这样不能利用已知信息,使得聚类集成的准确性、鲁棒性和稳定性降低。把半监督学习和聚类集成结合起来,设计半监督聚类集成模型来克服这些缺点。主要工作包括:第一,设计了基于贝叶斯网络的半监督聚类集成(semi-supervised cluster ensemble,简称SCE)模型,并对模型用变分法进行了推理求解;第二,在此基础上,给出了EM(expectation maximization)框架下的具体算法;第三,从UCI(University of Califor

    Abstract:

    The existing algorithms are mostly unsupervised algorithms of a cluster ensemble, which cannot take advantages of known information of datasets. As a result, the precision, robustness, and stability of a cluster ensemble are degraded. To conquer these disadvantages, a semi-supervised cluster ensemble (SCE) model, based on both semi-supervised learning and ensemble learning technologies, is designed in this paper. There are three main works in this paper. The first is that SCE is proposed, and the variational inference oriented SCE is illustrated in detail. The second is based on the above work: an EM (expectation maximization) algorithm of SCE is illustrated step by step. The third is that some datasets are drawn from the UCI (University of California, Irvine) machine learning database for experiments which show that both SCE and its EM algorithm are good for semi-supervised cluster ensemble and outperforms NMFS (algorithm of nonnegative-matrix-factorization based semi-supervised), semi-supervised SVM (support vector machine), and LVCE (latent variable model for cluster ensemble). The Semi-Supervised Cluster Ensemble model is first stated in this paper, and this paper includes the advantages of both the semi-supervise learning and the cluster ensemble. Therefore, its result is better than the results of semi-learning clustering and cluster ensemble.

    参考文献
    相似文献
    引证文献
引用本文

王红军,李志蜀,戚建淮,成飏,周鹏,周维.基于贝叶斯网络的半监督聚类集成模型.软件学报,2010,21(11):2814-2825

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2009-07-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号