一种自适应的Web图像语义自动标注方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60403018, 60773077, 90818023 (国家自然科学基金); the National Basic Research Program of China under Grant No.2005CB321905 (国家重点基础研究发展计划(973))


Adaptive Model for Web Image Semantic Automatic Annotation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种自适应的Web图像语义自动标注方法:首先利用Web标签资源自动获取训练数据;然后通过带约束的分段惩罚加权回归模型将关联文本权重分布自适应学习和先验知识约束有机地结合在一起,实现Web图像语义的自动标注.在4 000幅从Web获得的图像数据集上的实验结果验证了该文自动获取训练集方法以及Web图像语义标注方法的有效性.

    Abstract:

    This paper proposes a novel adaptive model for Web image semantic automatic annotation. First, the model automatically collects training image data by exploring the associated textual data and the social tagging data of Web images, such as the Flickr’s Related Tags. Then, using a newly constrained piecewise penalty weighted regression to combine the adaptive estimation of the weight distribution of associated texts and the prior knowledge constrain together and implement the Web image semantic annotation. The proposed training data auto-generation methods and Web image annotation approaches are tested on a real-world Web image data set and promising results are achieved.

    参考文献
    相似文献
    引证文献
引用本文

许红涛,周向东,向宇,施伯乐.一种自适应的Web图像语义自动标注方法.软件学报,2010,21(9):2183-2195

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-10-14
  • 最后修改日期:2009-01-15
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号