从不确定图中挖掘频繁子图模式
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60533110, 60773063 (国家自然科学基金) the National Basic Research Program of China under Grant No.2006CB303005 (国家重点基础研究发展计划(973)); the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0333 (新世纪优秀人才支持计划)


Mining Frequent Subgraph Patterns from Uncertain Graphs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究不确定图数据的挖掘,主要解决不确定图数据的频繁子图模式挖掘问题.介绍了一种数据模型来表示图的不确定性,以及一种期望支持度来评价子图模式的重要性.利用期望支持度的Apriori性质,给出了一种基于深度优先搜索策略的挖掘算法.该算法使用高效的期望支持度计算方法和搜索空间裁剪技术,使得计算子图模式的期望支持度所需的子图同构测试的数量从指数级降低到线性级.实验结果表明,该算法比简单的深度优先搜索算法快3~5个数量级,有很高的效率和可扩展性.

    Abstract:

    This paper studies uncertain graph data mining and especially investigates the problem of mining frequent subgraph patterns from uncertain graph data. A data model is introduced for representing uncertainties in graphs, and an expected support is employed to evaluate the significance of subgraph patterns. By using the apriori property of expected support, a depth-first search-based mining algorithm is proposed with an efficient method for computing expected supports and a technique for pruning search space, which reduces the number of subgraph isomorphism testings needed by computing expected support from the exponential scale to the linear scale. Experimental results show that the proposed algorithm is 3 to 5 orders of magnitude faster than a na?ve depth-first search algorithm, and is efficient and scalable.

    参考文献
    相似文献
    引证文献
引用本文

邹兆年,李建中,高宏,张硕.从不确定图中挖掘频繁子图模式.软件学报,2009,20(11):2965-2976

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-29
  • 最后修改日期:2008-10-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号