基于邻接空间的鲁棒语音识别方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60272019(国家自然科学基金)


Robust Speech Recognition Based on Neighborhood Space
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于邻接空间模型的鲁棒语音识别方法,解决测试集和训练集差别导致的识别正确率过低的问题.在以声学模型为中心的邻接空间中计算贝叶斯预测概率密度值,作为观察概率输出分值进行识别.实验表明,相对于传统语音识别方法,鲁棒识别方法在保证干净测试集的识别率没有很大下降的前提下,对含噪测试集的识别率获得了较大的提高.

    Abstract:

    This paper presents an approach to robust speech recognition based on neighborhood space, which can achieve performance robustness under mismatch between training and testing conditions. This approach uses neighborhood space of each underlying model to produce Bayesian predictive density as observation probability density. Experimental results show that the proposed method improves the performance robustness.

    参考文献
    相似文献
    引证文献
引用本文

严斌峰,朱小燕,张智江,张范.基于邻接空间的鲁棒语音识别方法.软件学报,2007,18(4):878-883

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-02-02
  • 最后修改日期:2005-08-24
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号