语义分析和结构化语言模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported bythe National High-Tech Research and Development Plan of China under Grant No.2001AAll4071(国家高技术研究发展计划(863))


Semantic Analysis and Structured Language Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一个语义分析集成系统,并在此基础上构建了结构化的语言模型.该语义分析集成系统能够自动分析句子中各个词的词义以及词之间的语义依存关系,达到90.85%的词义标注正确率和75.84%的语义依存结构标注正确率.为了描述语言的结构信息和长距离依存关系,研究并分析了两种基于语义结构的语言模型.最后,在中文语音识别任务上测试两类语言模型的性能.与三元语言模型相比,性能最好的语义结构语言模型--中心词三元模型,使绝对字错误率下降0.8%,相对错误率下降8%.

    Abstract:

    An integrated semantic analysis system is presented, and the structured language models are proposed based on it. The semantic analysis system can automatically tag semantic class for each word and analyze the semantic dependency structure between words with the precision of 90.85% and 75.84% respectively. In order to describe sentence structure and long-distance dependency, two kinds of structured language models are examined and analyzed. Finally, these two language models are evaluated on the task of Chinese speech recognition. Experiments show that the best semantic structured language model?headword trigram model?achieves 0.8% absolute error reduction and 8% relative error reduction over the trigram model.

    参考文献
    相似文献
    引证文献
引用本文

李明琴,李涓子,王作英,陆大?.语义分析和结构化语言模型.软件学报,2005,16(9):1523-1533

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-05-14
  • 最后修改日期:2004-09-07
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号