一种SVM增量学习算法α-ISVM
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(69903006,60073030);江苏省"九五"科技重点攻关资助项目(BE96017)


An Incremental SVM Learning Algorithm α-ISVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于SVM(support vector machine)理论的分类算法,由于其完善的理论基础和良好的试验结果,目前已逐渐引起国内外研究者的关注.深入分析了SVM理论中SV(support vector,支持向量)集的特点,给出一种简单的SVM增量学习算法.在此基础上,进一步提出了一种基于遗忘因子α的SVM增量学习改进算法α-ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识,使得对样本进行有选择地遗忘成为可能.理论分析和实验结果表明,该算法能在保证分类精度的同时,有效地提高训练速度并降低存储空间的占用.

    Abstract:

    The classification algorithm based on SVM (support vector machine) attracts more attention from researchers due to its perfect theoretical properties and good empirical results. In this paper, the properties of SV set are analyzed thoroughly, and a new learning method is introdnced to extend the SVM Classification algorithm to incremental learning area. After that, a new improved incremental SVM learning algorithm is proposed, which is based on a sifting factor. This algorithm accumulates distribution knowledge of the training sample while the incremental training is proceeded, and thus makes it possible to discard samples optimally. The theoretical analysis and experimental results show that this algorithm could not only improve the training speed, but also reduce storage cost.

    参考文献
    相似文献
    引证文献
引用本文

萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM.软件学报,2001,12(12):1818-1824

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2000-04-04
  • 最后修改日期:2000-07-10
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号