2018, 29(9):2664-2680.DOI: 10.13328/j.cnki.jos.005265
摘要:对于概率模糊聚类,贝叶斯模糊聚类方法表现出良好的聚类性能,它从先验知识和贝叶斯理论的角度出发,采用最大后验概率理论处理模糊划分,进而获取最终的聚类结果.该方法有效地结合了概率论和模糊论两者的优点,较之传统的模糊聚类算法(如FCM算法),该方法能够获取全局最优解并估计聚类个数.但在大数据时代,该方法较高的时间复杂度限制了它的实用性.针对此问题,首先在贝叶斯模糊聚类中引入加权机制,提出了加权贝叶斯模糊聚类算法;然后将其与单趟聚类框架相结合,提出了面向大规模数据的快速单趟贝叶斯模糊聚类算法,并从理论上对相关性质进行了较为深入的分析.所提出的单趟贝叶斯模糊聚类新算法较之贝叶斯模糊聚类算法在时间复杂度和收敛性上均有着不同程度的性能提升,同时继承了贝叶斯模糊聚类的良好的聚类性能.最后,相关实验结果亦验证了所提方法的有效性.
2017, 28(2):185-202.DOI: 10.13328/j.cnki.jos.004937
摘要:随机时变背包问题(randomized time-varying knapsack problem,简称RTVKP)是一种动态背包问题,也是一种动态组合优化问题,目前其求解算法主要是动态规划的精确算法、近似算法和遗传算法.首先,利用动态规划提出了一种求解RTVKP问题的精确算法,对算法时间复杂度的比较结果表明,它比已有的精确算法更适于求解背包载重较大的一类RTVKP实例.然后,分别基于差分演化和粒子群优化与贪心修正策略相结合,提出了求解RTVKP问题的两种进化算法.对5个RTVKP实例的数值计算结果比较表明,精确算法一般不宜求解大规模的RTVKP实例,而基于差分演化、粒子群优化和遗传算法与贪心修正策略相结合的进化算法却不受实例规模与数据大小的影响,对于振荡频率大且具有较大数据的大规模RTVKP实例均能求得一个极好的近似解.
2013, 24(11):2699-2709.DOI: 10.3724/SP.J.1001.2013.04474
摘要:随机块模型可以生成各种不同结构(称作广义社区,包括传统社区、二分结构、层次结构等)的网络,也可以根据概率对等原则发现网络中的广义社区.但简单的随机块模型在网络生成过程建模和模型学习方面存在许多问题,导致不能很好地发现实际网络的结构,其扩展模型GSB(general stochastic block)基于链接社区思想发现广义社区,但时间复杂度限制其在中大型规模网络中的应用.为了在无任何先验的情形下探索不同规模网络的潜在结构,基于GSB 模型设计一种快速算法FGSB,更快地发现网络的广义社区.FGSB 在迭代过程中动态学习网络结构参数,将GSB 模型的参数重新组织,减少不必要的参数,降低算法的存储空间;对收敛节点和边的参数进行裁剪,减少每次迭代的相关计算,节省算法的运行时间.FGSB 与GSB 模型求解算法有相同的结构发现能力,但FGSB 耗费的存储空间和运行时间比GSB 模型求解算法要低.在不同规模的人工网络和实际网络上验证得出:在近似相同的准确率下,FGSB 比GSB 模型求解算法快,且可发现大型网络的广义社区.
2011, 22(5):938-950.DOI: 10.3724/SP.J.1001.2011.03817
摘要:首先,在有限整数集上建立有效拆分关系,在联盟集上建立有效二部分解关系,并设计了一种EOCS (effective optimal coalition structure)算法.该算法采用自底向上方式,只对具有有效二部分解关系的联盟进行二部分解来求联盟的优值,从而降低了二部分解的数量.随后,利用函数的克林闭包特性证明了EOCS算法的正确性,利用积分极限定理证明了EOCS 算法时间复杂度的下界是Ω(2.818n),用时间序列分析方法求出了EOCS 算法的上界是
2006, 17(2):216-222.
摘要:在图像模板匹配问题中,基于像素灰度值的相关算法尽管已经十分普遍,并得到广泛的应用,但目前此类算法都还存在有时间复杂度高、对图像亮度与尺寸变化敏感等缺点.为了克服这些缺点,提出一种新的基于图像灰度值的编码表示方法.这种方法将图像分割为一定大小的方块(称为R-块),计算每个R-块图像的总灰度值,并根据它与相邻R-块灰度值的排序关系进行编码.然后通过各个R-块编码值的比较,实现图像与模板的匹配新算法中各个R-块编码的计算十分简单;匹配过程只要对编码值进行相等比较,而且可以采用快速的比较算法新算法对像素灰度的变化与噪声具有鲁棒性,其时间复杂度是O(M2log(N)).实验结果表明,新算法比现有的灰度相关算法的计算时间快了两个数量级.
2001, 12(12):1775-1783.
摘要:计算时间复杂性是演化理论中的一个重大课题.将趋势分析引入演化算法的平均时间复杂性分析,可用于很广一类演化算法及许多问题.基于趋势分析,研究了确定演化算法时间复杂性的一些有用的趋势条件.这些条件应用于完全欺骗问题以验证其有效性.
1996, 7(1):41-44.
摘要:本文提出堆的路径二分搜索算法.当用堆来实现优先队列时,此算法可用较少的比较次数完成插入及删除最大元素等操作.