2016, 27(S2):137-147.
摘要:针对自然人机交互应用中的人体动作识别问题,总结了传统机器学习模型在识别人体动作时的缺点,然后在此基础上针对自然人机交互应用的独特要求提出了面向人体动作识别的随机增量型混合学习机模型.该模型将误差反向传播模型、增量型极限学习机模型和双端增量型极限学习机模型相结合,克服了传统方法在识别人体动作时的不足.详细阐述了针对面向人体动作识别的随机增量型混合学习机模型的算法理论、模型合理性和实现方案.最后通过对比识别实验结果,验证了随机增量型混合学习机模型在识别人体动作问题上具有更好的鲁棒性、实时性和准确性.