2025, 36(2):660-679.DOI: 10.13328/j.cnki.jos.007090
摘要:大流识别是网络测量中的一项关键基础性工作, 目前主流的方法是采用概要型数据结构Sketch快速统计网络流量, 进而高效筛选大流. 然而, 当网络流量发生抖动时, 大量分组的急速涌入将导致大流识别精度显著下降. 对此, 提出一种支持流量抖动的网络大流弹性识别方法RobustSketch. 所提方法首先设计基于Sketch循环链的可伸缩小流过滤器, 根据实时分组到达速率适应性扩增与缩减其中的Sketch数量, 以始终完整记录当前时间周期内所有到达的网络分组, 从而确保网络流量抖动出现时仍能精确过滤小流. 然后设计基于动态分段哈希的可拓展大流记录表, 根据小流过滤器筛选后的候选大流数量适应性增加与减少分段, 以完整记录所有候选大流, 并保持较高的存储空间利用率. 进一步, 通过理论分析给出了所提小流过滤器和大流记录表的误差界限. 最后, 借助真实网络流量样本, 对所提大流识别方法RobustSketch进行实验评估. 实验结果表明: 所提方法的大流识别精确率明显高于现有方法, 即使在网络流量抖动时仍能稳定保持在99%以上, 而平均相对误差减少了86%以上, 有效提升了大流识别的精确性和鲁棒性.
2025, 36(2):732-746.DOI: 10.13328/j.cnki.jos.007159
摘要:可编程交换机的网络流量测量技术凭借其特性可以处理高速网络流量, 在灵活性、实时性等方面均有巨大的优势. 然而, 由于需要使用复杂的P4语言配置交换机的内部逻辑, 测量任务部署复杂且易错. 此外, 测量准确度往往受限于交换机内部可用的测量资源. 详细研究基于意图的网络及网络流量测量技术, 提出一种意图驱动的网络流量分布式测量方法. 首先, 设计基于测量意图原语的意图表示形式, 构建意图编译器将抽象意图表示转译为可执行的P4代码. 其次, 提出网络流量分布式测量方法, 使用多台交换机的资源以分布式的方式协同完成一个测量任务, 以大流测量为例介绍测量资源动态分配及计数器配置算法. 最后, 实验结果表明所提出的方法可行并且具有一定的优越性.
2016, 27(5):1188-1198.DOI: 10.13328/j.cnki.jos.004960
摘要:网络安全可视化作为一个交叉应用研究领域,为传统网络安全数据分析方法注入了新的活力.但已有研究过于注重网络安全数据的可视表达,而忽视了对分析流程的支持.抽象了网络安全分析人员用网络流量时序数据检测网络异常的过程,提出了一个自顶向下的网络流量时序分析流程模型.以该模型为指导,设计并实现了一个多视图合作的网络流量时序数据可视分析原型系统.在分析端口扫描和DDoS攻击等常见网络异常的案例中,该系统中的4个协同交互、简单易用的可视视图,可以较好地支撑分析人员由整体到个体、由点到面以及由历史到未来的网络流量时序数据分析过程.
2014, 25(1):135-153.DOI: 10.13328/j.cnki.jos.004445
摘要:高速网络流量测量是目前实施实时准确地监测、管理和控制网络的基础.基于网络流量测量的应用,将网络流量测量分为抽样方法和数据流方法.从不同的层次,将抽样方法分为分组抽样和流抽样,分别介绍了两类抽样方法;从测度角度介绍了数据流方法.详细介绍了高速网络流量测量的常用数据结构,以及抽样、数据流方法在高速网络流量测量中的应用,比较了各种方法的优劣.概述了高速网络流量测量技术的研究进展.最后,就现有的网络流量测量方法的不足,对网络流量测量的发展趋势和进一步的研究方向进行了讨论.
2011, 22(1):115-131.DOI: 10.3724/SP.J.1001.2011.03950
摘要:Internet 流量模型对网络性能管理、QoS、准入控制等都有很重要的意义和作用.首先总结了现阶段已发现的主要网络流量的特性及相关度量参数,概要地介绍网络流量建模的意义和分类,然后按照“传统-自相似-流量建模的新发展”这3 个阶段阐述网络流量建模的发展历程与最新的研究成果,最后针对目前网络流量建模中存在的难点问题,展望了该领域未来的研究发展方向.
2010, 21(10):2573-2583.
摘要:由于人们对网络流量规律的认识还不够深入,大型高速网络流量的异常检测仍然是目前测量领域研究的一个难点问题.通过对网络流量结构和流量信息结构的研究发现,在一定范围内,正常网络流量的IP、端口等具有重尾分布和自相似特性等较为稳定的流量结构,这种结构对应的信息熵值较为稳定.异常流量和抽样流量的信息熵值以正常流量信息熵值为中心波动,构成以IP、端口和活跃IP数量为维度的空间信息结构.据此对流量进行建模,提出了基于流量信息结构的支持向量机(support vector machine,简称SVM)的二值分类算法,其核心是将流量异常检测转化为基于SVM的分类决策问题.实验结果表明,该算法具有很高的检测效率,还初步验证了该算法的抽样检测能力.因此,将该算法应用到大型高速骨干网络具有实际意义.
2010, 21(10):2642-2655.
摘要:数据包公平抽样通过牺牲长流的包抽样率以换取更高的短流包抽样率,因而比均匀随机包抽样更能保证数据流之间的公平性.现有的公平抽样算法SGS(sketch guided sampling)存在空间效率低、短流估计误差大的问题.提出了一种空间高效的数据包公平抽样算法SEFS(space-efficient fair sampling).SEFS算法的新颖之处在于采用多解析度抽样统计器对数据流流量作近似估计,各个统计器由d-left哈希表实现.采用在OC-48和OC-192骨干网采集的真实流量数据,在数据流流量测量以及长流检测的应用背景下,对SEFS算法和SGS算法的性能进行了比较.实验结果表明,与SGS算法相比,SEFS算法在空间复杂度降低65%的前提下,仍具有更高的估计精度.特别是对于占网络数据流绝大多数的短流而言,SEFS算法估计精度高的优势更为明显.
2005, 16(5):652-658.
摘要:为了解决计算资源和高速网络流量之间的矛盾,需要对IP流进行抽样或负载均衡等处理,而哈希算法是资源代价的核心.首先提出评价哈希算法性能的随机测度;其次从理论上证明比特之间异或运算和位移运算能够提高哈希值的随机特性,提出比特流之间哈希算法的原则;然后分析IP报文的4个字段:源IP、宿IP、源端口和宿端口的特性,由此提出相关的哈希算法;最后使用CERNET主干流量和PMA的数据验证算法的性能,并与IPSX和CRC32算法进行比较.研究表明,基于异或、位移原则的比特流哈希算法的执行效率和哈希值的均匀性两方面具有较好的性质,能够满足高速网络流量测量需求.