查 询 高级检索+
共找到相关记录29条
    全 选
    显示方式:|
    • 采用多目标优化的深度学习测试优化方法

      2022, 33(7):2499-2524.DOI: 10.13328/j.cnki.jos.006583

      关键词:深度学习软件测试测试输入选择多目标优化遗传进化
      摘要 (1671)HTML (3468)PDF 2.35 M (4817)收藏

      摘要:随着深度学习技术的快速发展,对其质量保障的研究也逐步增多.传感器等技术的迅速发展,使得收集测试数据变得不再困难,但对收集到的数据进行标记却需要花费高昂的代价.已有工作尝试从原始测试集中筛选出一个测试子集以降低标记成本,这些测试子集保证了与原始测试集具有相近的整体准确率(即待测深度学习模型在测试集全体测试输入上的准确率),但却不能保证在其他测试性质上与原始测试集相近.例如,不能充分覆盖原始测试集中各个类别的测试输入.提出了一种基于多目标优化的深度学习测试输入选择方法DMOS (deep multi-objective selection),其首先基于HDBSCAN (hierarchical density-based spatial clustering of applications with noise)聚类方法初步分析原始测试集的数据分布,然后基于聚类结果的特征设计多个优化目标,接着利用多目标优化求解出合适的选择方案.在8组经典的深度学习测试集和模型上进行了大量实验,结果表明,DMOS方法选出的最佳测试子集(性能最好的Pareto最优解对应的测试子集)不仅能够覆盖原始测试集中更多的测试输入类别,而且对各个类别测试输入的准确率估计非常接近原始测试集.同时,它还能保证在整体准确率以及测试充分性上的估计也接近于原始测试集:对整体准确率估计的平均误差仅为1.081%,比最新方法PACE (practical accuracy estimation)减小了0.845%的误差,提升幅度为43.87%;对各个类别测试输入的准确率估计的平均误差仅为5.547%,比最新方法PACE减小了2.926%的误差,提升幅度为34.53%;对5种测试充分性度量的平均估计误差仅为8.739%,比最新方法PACE减小了7.328%的误差,提升幅度为45.61%.

    • 软件测试路径选择优化模型及其进化求解

      2022, 33(9):3297-3311.DOI: 10.13328/j.cnki.jos.006387

      关键词:路径测试路径选择多目标优化带精英策略的非支配排序遗传算法Pareto最优解集
      摘要 (1165)HTML (1527)PDF 6.83 M (3104)收藏

      摘要:路径测试是一种非常重要且应用广泛的结构测试方法, 已有路径生成方法的测试效率不高、测试开销较大, 且易生成冗余测试路径. 针对以上问题, 主要研究路径选择问题的优化模型及其进化求解方法, 目的在于: 在不降低测试覆盖率的前提下, 减少冗余路径的数量, 降低测试消耗. 首先, 以多条路径作为决策变量, 基于该决策变量包含的边数和路径数, 建立多目标优化模型; 然后, 采用多目标进化算法求解该模型, 得到目标路径集. 将所提方法应用于7个基准测试程序, 并与其他算法比较. 实验结果表明, 相比其他算法, 所提方法能够在保证测试充分性的条件下, 降低测试消耗, 从而提高测试效率.

    • 响应时间约束的代码评审人推荐

      2021, 32(11):3372-3387.DOI: 10.13328/j.cnki.jos.006079

      关键词:代码评审响应时间约束多目标优化
      摘要 (2270)HTML (1840)PDF 672.17 K (4975)收藏

      摘要:同行代码评审,即对提交代码进行人工评审,是减少软件缺陷和提高软件质量的有效手段,已被Github等开源社区以及很多软件开发组织广泛采用.在GitHub社区,代码评审是其pull-based软件开发模型的重要组成部分.开源项目往往存在成百上千个候选评审人员,为评审工作推荐合适的评审人员是一项很有价值且挑战性的工作.基于真实开源项目的数据分析发现,评审响应时间过长是普遍存在的问题,这会延长评审周期、降低参与人员积极性,而已有的代码评审人推荐工作均没有考虑响应时间这个因素.因此,提出了响应时间约束的代码评审人推荐问题,即推荐的评审人能否在约定时间内进行评审;进而提出了基于多目标优化的代码评审人推荐方法(MOC2R),该方法通过最大化代码评审人经验、最大化在约定时间内的响应概率、最大化人员最近时间内的活跃性这3个目标,使用多目标优化算法来推荐代码评审人员.基于6个开源项目的数据进行实验,结果表明,在不同时间窗约束下(2h、4h、8h),Top-1准确率为41.7%~61.5%,Top-5准确率为66.5%~77.7%,显著优于两条常用且业内领先的基线方法,且3个目标均对人员推荐有贡献,其中,约定时间内的响应概率目标对于人员推荐的贡献最大.该方法能够进一步提升代码评审效率,提高开源社区的活跃性.

    • 面向多目标优化的多样性代理辅助进化算法

      2021, 32(12):3814-3828.DOI: 10.13328/j.cnki.jos.006109

      关键词:代理模型进化算法多目标优化昂贵问题参考向量模型管理Kriging
      摘要 (994)HTML (2154)PDF 1.57 M (3331)收藏

      摘要:代理辅助进化算法(SAEA)是目前解决昂贵优化问题的一种有效途径.提出一种基于多样性的代理辅助进化算法(DSAEA)来解决昂贵多目标优化问题.DSAEA采用Kriging模型近似每个目标来代替原目标函数进行评估,加速了进化算法的优化过程.其引入参考向量把问题分解为多个子问题,根据解与参考向量之间的角度大小建立它们的相关性,然后计算出最小相关解集.在此基础上,候选解生成算子和选择算子会趋向于保留多样性的解.另外,训练集A在每次迭代后会进行更新,根据多样性删除价值不大的样本以减少建模时间.实验部分对DSAEA与目前流行的代理辅助进化算法在大规模2目标和3目标优化问题上进行对比实验.每个算法在不同的测试问题上分别独立运行30次,并计算和统计反向迭代距离(IGD)、超体积(HV)和运行时间,最后使用秩和检验分析实验结果.结果表明:DSAEA在多数实验测试问题上表现更好,因此具有有效性和可行性.

    • 决策空间定向搜索的高维多目标优化策略

      2019, 30(9):2686-2704.DOI: 10.13328/j.cnki.jos.005842

      关键词:高维多目标优化决策空间定向搜索收敛性子空间分布性子空间
      摘要 (2035)HTML (1514)PDF 3.06 M (4856)收藏

      摘要:传统的多目标进化算法(MOEA)对于低维连续的多目标优化问题已经具有良好的性能,但是随着优化问题目标维数的增加,优化难度也将剧增,主要原因是算法本身搜索能力不足,维数增加时选择压力变小,收敛性和分布性冲突难以平衡.利用连续多目标优化问题的特性,针对高维多目标优化的难点所在,提出了一种在决策空间的定向搜索策略(decision space,简称DS),该策略可与基于支配关系的MOEA相结合.DS首先对优化问题进行采样分析,对问题特性进行解析,得到收敛性子空间控制向量和分布性子空间控制向量.将算法搜索过程分为收敛性搜索阶段和分布性搜索阶段,分别对应收敛性子空间和分布性子空间,在不同阶段搜索时,利用采样分析结果,对生成子代个体的区域进行宏观的影响.将收敛性和分布性分阶段考虑,避免了收敛性和分布性难以平衡的难点,同时,具体在某一阶段内搜索资源相对集中,一定程度上增加了算法的搜索能力.实验结合了DS策略的NSGA-Ⅱ,SPEA2算法与原NSGA-Ⅱ,SPEA2算法进行实验对比,并以DS-NSGA-Ⅱ为例,与其他高维算法MOEAD-PBI,NSGA-Ⅲ,Hype,MSOPS,LMEA进行对比实验.实验结果表明,DS策略的引入,使得NSGA-Ⅱ,SPEA2算法在高维多目标优化问题上的性能有了显著提高,DS-NSGAⅡ与现有的经典高维多目标算法相比有较强的竞争力.

    • 基于文件粒度的多目标软件缺陷预测方法实证研究

      2019, 30(12):3694-3713.DOI: 10.13328/j.cnki.jos.005604

      关键词:软件质量保障软件缺陷预测有监督学习无监督学习多目标优化
      摘要 (1860)HTML (1534)PDF 2.55 M (4877)收藏

      摘要:软件缺陷预测技术通过挖掘和分析软件库训练出软件缺陷预测模型,随后利用该模型来预测出被测软件项目内的缺陷程序模块,因此可以有效地优化测试资源的分配.在基于代价感知的评测指标下,有监督学习方法与无监督学习方法之间的预测性能比较是最近的一个热门研究话题.其中在基于文件粒度的缺陷预测问题中,Yan等人最近对Yang等人考虑的无监督学习方法和有监督学习方法展开了大规模实证研究,结果表明存在一些无监督学习方法,其性能要优于有监督方法.基于来自开源社区的10个项目展开了实证研究.结果表明:在同项目缺陷预测场景中,若基于ACC评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有105.81%和123.84%的提高;若基于POPT评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有35.61%和38.70%的提高.在跨项目缺陷预测场景中,若基于ACC评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有22.42%和34.95%的提高.若基于POPT评测指标,MULTI方法与最好的无监督方法和有监督方法相比,其预测性能平均有11.45%和17.92%的提高.同时,基于Huang等人提出的PMI和IFA评测指标,MULTI方法的表现与代价感知的指标相比存在一定的折衷问题,但仍好于在ACC和POPT评测指标下表现最好的两种无监督学习方法.除此之外,将MULTI方法与最新提出的OneWay和CBS方法进行了比较,结果表明,MULTI方法在性能上仍然可以显著优于这两种方法.同时,基于F1评测指标的结果也验证了MULTI方法在预测性能上的显著优越性.最后,通过分析模型构建的时间开销,表明MULTI方法的模型构建开销对开发人员来说处于可接受的范围之内.

    • 移动云计算中基于延时传输的多目标工作流调度

      2018, 29(11):3306-3325.DOI: 10.13328/j.cnki.jos.005479

      关键词:移动云计算工作流调度多目标优化遗传算法延时传输
      摘要 (6272)HTML (3695)PDF 2.67 M (7522)收藏

      摘要:云计算和移动互联网的不断融合,促进了移动云计算的产生与发展.在移动云计算环境下,用户可将工作流的任务迁移到云端执行,这样不但能够提升移动设备的计算能力,而且可以减少电池能源消耗.但是不合理的任务迁移会引起大量的数据传输,这不仅损害工作流的服务质量,而且会增加移动设备的能耗.基于此,提出了基于延时传输机制的多目标工作流调度算法MOWS-DTM.该算法基于遗传算法,结合工作流的调度过程,在编码策略中考虑了工作流任务的调度位置和执行排序.由于在用户不断移动的过程中,移动设备的无线网络信号也在不断变化,当传输一定大小的数据时,网络信号越强则需要的时间越少,从而移动设备的能耗也越少.而且工作流结构中存在许多非关键任务,延长非关键任务的执行时间并不会对工作流的完工时间造成影响.因此,在工作流调度过程中融入了延时传输机制DTM,该机制能够同时有效地优化移动设备的能耗和工作流的完工时间.仿真结果表明,相对于MOHEFT算法和RANDOM算法,MOWS-DTM算法在多目标性能上更优.

    • 基于偏好的个性化路网匹配算法

      2018, 29(11):3500-3516.DOI: 10.13328/j.cnki.jos.005297

      关键词:时空数据轨迹路网匹配多目标优化Skyline路径动态规划
      摘要 (3104)HTML (1850)PDF 2.17 M (4214)收藏

      摘要:定位技术的普遍应用,使得随时随地获取个人位置成为可能,进一步推动了基于位置的服务等新型应用的发展,产生了海量轨迹数据.精确的路网匹配对提高这些新型应用的服务质量具有重要的研究意义,然而受众多因素的影响,大部分轨迹的采样率较低,比如由签到类应用或低功耗设备生成的低采样轨迹,给路网匹配带来了巨大的挑战.研究基于偏好的个性化路网匹配(driving preference based personalized map-matching,简称DPMM),提出了在动态道路交通网络中的用户驾驶偏好模型.基于该模型,提出了两阶段路网匹配算法:局部匹配搜索用户最可能采用的几条局部Skyline路径;设计了全局匹配的动态规划算法,该算法返回在用户驾驶偏好下最可能的多条全局路径作为最终匹配结果.实验结果充分表明,该方法是有效的和高效的,具有一定的使用价值.

    • 线性查询的一种近似最优差分隐私机制

      2017, 28(9):2309-2322.DOI: 10.13328/j.cnki.jos.005184

      关键词:线性查询差分隐私最优机制多目标优化非敏感度方法
      摘要 (3970)HTML (3050)PDF 1.29 M (5928)收藏

      摘要:在差分隐私保护程度确定的条件下使数据的有用性最大化的问题,称为差分隐私的最优机制问题.最优机制问题是差分隐私理论中的一个重要问题,与差分隐私模型的理论基础及应用前景有直接联系.与已有的研究不同,提出一种不基于敏感度的分析方法来寻找最优机制:首先,将最优机制问题构造为一个多目标函数优化问题,并提出了一种差分隐私机制构造方法,在此基础上,对线性查询问题给出了一种近似最优差分隐私机制,该机制达到了差分隐私不等式的边界.此外,大部分分析方法也可对非线性查询的最优机制问题进行分析.该研究揭示了敏感度方法的不足之处,发现其无法刻画数据集的邻居集合对应的查询函数值集合的特性,而该集合包含了差分隐私的一些深层特征.

    • 面向软件产品线中特征选择的多目标优化算法

      2017, 28(10):2548-2563.DOI: 10.13328/j.cnki.jos.005130

      关键词:软件产品线特征选择多目标优化算法非功能需求功能需求
      摘要 (3004)HTML (1507)PDF 762.04 K (3963)收藏

      摘要:软件产品线中,产品定制的核心是选择合适的特征集.由于多个非功能需求间往往相互制约甚至发生冲突,特征选择的本质是多目标优化过程.优化过程的搜索空间被特征间错综复杂的依赖和约束关系以及明确的功能需求大大限制.另外,有些非功能需求有明确的数值约束,而有些则仅要求尽可能地得到优化.多样的非功能需求约束类型也给优化选择过程带来极大的挑战.提出一种含修正算子的多目标优化算法MOOFs.首先,设计特征间依赖和约束关系描述语言DL-DCF来统一规范特征选择过程中必须遵守的规则,所有的非功能需求都转化为优化目标,相关的数值约束则作为优化过程中特征选择方案的过滤器.另外,设计了修正算子用于保证选择出的特征配置方案必满足产品线的特征规则约束.通过与4种常用的多目标优化算法在4个不同规模的特征模型上的运行结果进行对比,表明该方法能够更快地产生满足约束的优化解,且优化解具备更好的收敛性与多样性.

    上一页123
    共3页29条记录 跳转到GO

您是第19737706位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号