查 询 高级检索+
共找到相关记录8条
    全 选
    显示方式:|
    • 基于深度语义匹配的法律条文推荐方法

      2022, 33(7):2618-2632.DOI: 10.13328/j.cnki.jos.006287

      关键词:法律条文推荐语义匹配卷积神经网络可解释性
      摘要 (1024)HTML (1471)PDF 2.01 M (2667)收藏

      摘要:法律条文(简称法条)是司法量刑的主要依据,法律条文的精准推荐,能够辅助提高法律智能判决的质量.目前,主流的法条推荐模型是将有限数量的法条当作类别标签,采用分类的思想,根据法律文书的案例描述将其归类到相关的法条.但是法条作为法律规范的文字表述形式,现有的分类方法简单将其作为类别标签的索引编号,导致对其语义信息利用不足,影响了推荐质量.针对此问题,研究将主流的法条推荐方法从分类模型转化为语义匹配模型,提出了基于深度语义匹配的法条推荐方法(DeepLawRec).该方法包含局部语义匹配模块和全局语义推荐模块,分别设计双向Transformer卷积网络模型和基于回归树的推荐模型,在理解文本序列的同时,关注与法条匹配学习相关的局部语义特征,增强法条推荐的准确率和可解释性.在公开数据集上的实验结果表明,DeepLawRec方法在推荐质量上优于传统的文本分类以及经典的语义匹配方法,并进一步探讨了如何分析和判读推荐结果.

    • 基于深度学习的图像隐写分析综述

      2021, 32(2):551-578.DOI: 10.13328/j.cnki.jos.006135

      关键词:隐写术隐写分析卷积神经网络深度学习对抗样本
      摘要 (5040)HTML (7019)PDF 2.68 M (15361)收藏

      摘要:隐写术及隐写分析是信息安全领域研究热点之一.隐写术的滥用造成许多安全隐患,如非法分子利用隐写进行隐蔽通信完成恐怖袭击.传统隐写分析方法的设计需要大量先验知识,而基于深度学习的隐写分析方法利用网络强大的表征学习能力自主提取图像异常特征,大大减少了人为参与,取得了较好的研究效果.为了促进基于深度学习的隐写分析方法研究,对目前隐写分析领域的主要方法和突破性工作进行了分析与总结.首先,比较了传统隐写分析方法与基于深度学习的隐写分析方法的差异;然后根据训练方式的不同,将基于深度学习的隐写分析模型分为两类——半学习隐写分析模型与全学习隐写分析模型,详细介绍了基于深度学习的各类隐写分析网络结构与检测效果;其次,分析和总结了对抗样本对深度学习安全带来的挑战,并阐述了基于隐写分析的对抗样本检测方法;最后,总结了现有基于深度学习的隐写分析模型存在的优缺点,并探讨了基于深度学习的隐写分析模型的发展趋势.

    • 面向时空图建模的图小波卷积神经网络模型

      2021, 32(3):726-741.DOI: 10.13328/j.cnki.jos.006170

      关键词:图小波卷积图卷积神经网络时空图建模时空结构图神经网络
      摘要 (2654)HTML (4382)PDF 1.75 M (6843)收藏

      摘要:时空图建模是分析图形结构系统中各要素空间关系与时间趋势的一个基础工作.传统的时空图建模方法主要基于图中节点与节点关系固定的显式结构进行空间关系挖掘,这严重限制了模型的灵活性.此外,未考虑节点间的时空依赖关系的传统建模方法不能捕获节点间的长时时空趋势.为了克服这些缺陷,研究并提出了一种新的用于时空图建模的图神经网络模型,即面向时空图建模的图小波卷积神经网络模型(graph wavelet convolutional neural network for spatiotemporal graph modeling,简称GWNN-STGM).在GWNN-STGM中设计了一个图小波卷积神经网络层,并在该网络层中设计并引入了自适应邻接矩阵进行节点嵌入学习,使得模型能够在不需要结构先验知识的情况下,从数据集中自动发现隐藏的结构信息.此外,GWNN-STGM还包含了一个堆叠的扩张因果卷积网络层,使模型的感受野能够随着卷积网络层数的增加呈指数增长,从而能够处理长时序列.GWNN-STGM成功将图小波卷积神经网络层和扩张因果卷积网络层两个模块进行有效集成.通过在公共交通网络数据集上实验发现,提出的GWNN-STGM的性能优于其他的基准模型,这表明设计的图小波卷积神经网络模型在从输入数据集中探索时空结构方面具有很大的潜力.

    • 基于1D-CNN联合特征提取的轴承健康监测与故障诊断

      2021, 32(8):2379-2390.DOI: 10.13328/j.cnki.jos.006188

      关键词:工业物联网故障诊断轴承一维卷积神经网络联合特征
      摘要 (3611)HTML (4680)PDF 1.04 M (9432)收藏

      摘要:针对特定机械设备构建数据驱动的故障诊断模型缺乏泛化能力,而轴承作为各型机械的共有核心部件,对其健康状态的判定对不同机械的衍生故障分析具有普适性意义.提出了一种基于1D-CNN(one-dimensional convolution neural network)联合特征提取的轴承健康监测与故障诊断算法.算法首先对轴承原始振动信号进行分区裁剪,裁剪获得的信号分区作为特征学习空间并行输入1D-CNN中,以提取各工况下的代表性特征域.为了避免对故障重叠信息的处理,优先使用对健康状态敏感的特征域构建轴承健康状态判别模型,若健康状态判别模型识别轴承未处于健康状态,特征域将与原始信号联合重构,通过耦合自动编码器开展故障模式判定.使用凯斯西储大学(Case Western Reserve University)的轴承数据开展实验,结果表明,该算法继承了深层学习模型的准确性和鲁棒性,具有较高的故障诊断精度和较低的诊断时延.

    • 基于卷积神经网络的低嵌入率空域隐写分析

      2021, 32(9):2901-2915.DOI: 10.13328/j.cnki.jos.005980

      关键词:隐写分析卷积神经网络低嵌入率迁移学习
      摘要 (2757)HTML (1533)PDF 1.70 M (5784)收藏

      摘要:近年来,基于深度学习的空域隐写分析研究在高嵌入率下已经取得了较好的成果,但是对低嵌入率的检测效果还不太理想.因此设计了一种卷积神经网络结构,使用SRM滤波器进行预处理来获取隐写噪声残差,采用3个卷积层并对卷积核大小进行合理设计,通过适当选择批量归一化操作和激活函数来提升网络的性能.实验结果表明:与现有方法相比,所提出的网络结构对WOW,S-UNIWARD和HILL这3种常见的空域内容自适应隐写算法取得了更好的检测效果,且在低嵌入率0.2bpp,0.1bpp和0.05bpp下的检测效果有非常明显的提升.还提出了逐步迁移(step by step)的迁移学习方法,进一步提升低嵌入率条件下的隐写分析效果.

    • 联合姿态先验的人体精确解析双分支网络模型

      2020, 31(7):1959-1968.DOI: 10.13328/j.cnki.jos.005933

      关键词:人体解析语义分割人体姿态估计部件检测卷积神经网络
      摘要 (2878)HTML (3696)PDF 1.49 M (6291)收藏

      摘要:人体解析旨在将人体图像分割成多个具有细粒度语义的部件区域,进行形成对人体图像的语义理解.然而,由于人体姿态的复杂性,现有的人体解析算法容易对人体四肢部件形成误判,且对于小目标区域的分割不够精确.针对上述问题,联合人体姿态估计信息,提出了一种人体精确解析的双分支网络模型.该模型首先使用基干网络表征人体图像,将人体姿态估计模型预测到的姿态先验作为基干网络的注意力信息,进而形成人体结构先验驱动的多尺度特征表达,并将提取的特征分别输入至全卷积网络解析分支与检测解析分支.全卷积网络解析分支获得全局分割结果,检测解析分支更关注小尺度目标的检测与分割,融合两个分支的预测信息可以获得更为精确的分割结果.实验结果验证了该算法的有效性,在当前主流的人体解析数据集LIP和ATR上,所提方法的mIoU评测指标分别为52.19%和68.29%,有效提升了解析精度,在人体四肢部件以及小目标部件区域获得了更为准确的分割结果.

    • 卷积神经网络在车辆目标快速检测中的应用

      2017, 28(s1):107-114.

      关键词:车辆检测卷积神经网络多层感知机粗粒度车辆识别
      摘要 (2570)HTML (0)PDF 1.48 M (5739)收藏

      摘要:我国机动车保有量急速增长,产生一系列严重的安全与交通问题.与此同时,视频图像文件呈爆炸式增长,为公安的监控、刑侦以及案件的侦破带来了很大的困扰.车辆目标检测与识别越来越受到人们的关注,研究一种高效而准确的车辆目标检测方法意义重大.在YOLO目标检测框架的基础上,设计了一种卷积神经网络的车辆检测及其车型粗粒度识别方法.网络结构采用多层感知机卷积层,增加特征映射的非线性处理能力;移除原来模型中的全连接层,利用锚点框预测目标的边界框,在降低模型复杂度的同时提高了目标检测的召回率.实验结果表明,与主流的目标检测方法相比,该车辆目标检测方法在处理速度和准确度上都有提高,在迭代20 000次的情况下,平均准确率为94.7%.

    • 卷积神经网络特征重要性分析及增强特征选择模型

      2017, 28(11):2879-2890.DOI: 10.13328/j.cnki.jos.005349

      关键词:卷积神经网络特征重要性分析特征选择文本分类
      摘要 (4064)HTML (2490)PDF 1.78 M (13440)收藏

      摘要:卷积神经网络等深度神经网络凭借着其强大的表达能力、突出的分类性能,已在不同领域内得到了广泛应用.当面对高维特征时,深度神经网络通常被认为具有较好的鲁棒性,能够隐含地对特征进行选择,但由于网络参数巨大,如果数据量达不到足够的规模,则会导致学习不充分,因而可能无法达到最优的特征选择.而神经网络的黑箱特性使得无法观测神经网络选择了哪些特征,也无法评估其特征选择的能力.为此,以卷积神经网络为例,首先研究如何显式地表达神经网络中的特征重要性,提出了基于感受野的特征贡献度分析方法;其次,将神经网络特征选择与传统特征评价方法进行对比分析发现,在非海量样本的情况下,传统特征评价方法对高重要性特征和噪声特征的识别能力反而能够超过神经网络.因此,进一步地提出了卷积神经网络增强特征选择模型,将传统特征评价方法对特征重要性的理解结合到神经网络的学习过程中,以辅助深度神经网络进行特征选择.在基于文本的社交媒体用户属性建模任务下进行了对比实验,结果验证了该模型的有效性.

    上一页1下一页
    共1页8条记录 跳转到GO

您是第19734902位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号