查 询 高级检索+
共找到相关记录3条
    全 选
    显示方式:|
    • 基于对称正定流形潜在稀疏表示分类算法

      2020, 31(8):2530-2542.DOI: 10.13328/j.cnki.jos.005823

      关键词:对称正定矩阵黎曼流形再生核希尔伯特空间Nyström方法潜在字典
      摘要 (1389)HTML (2194)PDF 1.32 M (3073)收藏

      摘要:使用对称正定(symmetric positive definite,简称SPD)矩阵将视觉数据建模到黎曼流形(SPD流形),对于模式识别和机器学习中许多任务有较好的效果.其中,将基于稀疏表示的分类算法扩展到SPD流形上样本的分类任务得到了广泛的关注.本文综合考虑了稀疏表示分类算法的特点以及SPD流形的黎曼几何结构,通过核函数将SPD流形嵌入到再生核希尔伯特空间(reproducing kernel Hilbert space,简称RKHS),分别提出了核空间潜在稀疏表示模型和潜在分类方法.但是,原始的视觉数据在核空间中没有明确的表示形式,这给核空间中的潜在字典更新带来了不便.Nyström是一种可以近似表征核特征的方法.因此,我们利用该方法得到训练样本在RKHS中的近似表示,以更新潜在字典和潜在矩阵.最后,通过在5个标准数据集上的分类实验,验证了该方法的有效性.

    • 基于自适应Nyström采样的大数据谱聚类算法

      2014, 25(9):2037-2049.DOI: 10.13328/j.cnki.jos.004643

      关键词:大数据谱聚类特征分解Nyström扩展自适应采样
      摘要 (5916)HTML (2595)PDF 718.41 K (8836)收藏

      摘要:面对结构复杂的数据集,谱聚类是一种灵活而有效的聚类方法,它基于谱图理论,通过将数据点映射到一个由特征向量构成的低维空间,优化数据的结构,得到令人满意的聚类结果.但在谱聚类的过程中,特征分解的计算复杂度通常为O(n3),限制了谱聚类算法在大数据中的应用.Nyström扩展方法利用数据集中的部分抽样点,进行近似计算,逼近真实的特征空间,可以有效降低计算复杂度,为大数据谱聚类算法提供了新思路.抽样策略的选择对Nyström扩展技术至关重要,设计了一种自适应的Nyström采样方法,每个数据点的抽样概率都会在一次采样完成后及时更新,而且从理论上证明了抽样误差会随着采样次数的增加呈指数下降.基于自适应的Nyström采样方法,提出一种适用于大数据的谱聚类算法,并对该算法的可行性和有效性进行了实验验证.

    • 基于免疫谱聚类的图像分割

      2010, 21(9):2196-2205.

      关键词:图像分割谱聚类免疫谱聚类维数缩减Nystr?m逼近
      摘要 (5095)HTML (0)PDF 862.54 K (7928)收藏

      摘要:提出了一种基于免疫谱聚类的图像分割方法.利用谱聚类的维数缩减特性获得数据在映射空间的分布,在此基础上构造一种新的免疫克隆聚类,用于在映射空间中对样本进行聚类.该方法通过谱映射为后续的免疫克隆聚类提供低维而紧致的输入.而免疫克隆聚类算法具有快速收敛到全局最优并且对初始化不敏感的特性,从而可以获得良好的聚类结果.在将其用于图像分割时,采用了Nystr?m逼近策略来降低算法复杂度.合成纹理图像和SAR图像的分割结果验证了免疫谱聚类算法用于图像分割的有效性.

    上一页1下一页
    共1页3条记录 跳转到GO

您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号