查 询 高级检索+
共找到相关记录64条
    全 选
    显示方式:|
    • 对抗鲁棒性评估的指标体系及其完备性

      2025, 36(3):1304-1326.DOI: 10.13328/j.cnki.jos.007172

      关键词:对抗机器学习对抗鲁棒性对抗样本对抗攻击对抗扰动
      摘要 (436)HTML (189)PDF 5.24 M (2533)收藏

      摘要:对抗鲁棒性评估需要结合对抗样本攻击能力与噪声幅度形成对深度学习模型噪声抵御能力的完整、准确的评测. 然而, 对抗鲁棒性评估评价指标缺乏完备性是现有对抗攻防方法的一个关键问题. 现有的对抗鲁棒性评估相关工作缺少对评价指标体系的分析与比较, 忽视了攻击成功率和不同范数对鲁棒性评估指标体系完备性的影响以及对攻防方法设计的限制. 从范数选择和度量指标两个维度展开对抗鲁棒性评价指标体系的讨论, 分别从评价指标定义域的包含关系、鲁棒性描述粒度以及鲁棒性评估序关系3个方面对鲁棒性评估指标体系完备性进行理论分析, 并得出以下结论: 使用均值等噪声统计量比使用攻击成功率等评价指标定义域更大且更全面, 同时能够保证任意两个对抗样本集合都能够进行比较; 使用${L_2} $范数比使用其他范数在鲁棒性评估的描述上更具完备性. 在6个数据集上对23种模型及20种对抗攻击方法的大量实验验证了这些结论.

    • 深度代码模型安全综述

      2025, 36(4):1461-1488.DOI: 10.13328/j.cnki.jos.007254

      关键词:深度代码模型深度代码模型安全人工智能模型安全后门攻击与防御对抗攻击与防御
      摘要 (1053)HTML (144)PDF 12.67 M (841)收藏

      摘要:随着深度学习技术在计算机视觉与自然语言处理等领域取得巨大成功, 软件工程研究者开始尝试将其引入到软件工程任务求解当中. 已有研究结果显示, 深度学习技术在各种代码相关任务(例如代码检索与代码摘要)上具有传统方法与机器学习方法无法比拟的优势. 这些面向代码相关任务训练的深度学习模型统称为深度代码模型. 然而, 由于神经网络的脆弱性和不可解释性, 与自然语言处理模型与图像处理模型一样, 深度代码模型安全也面临众多挑战, 已经成为软件工程领域的焦点. 近年来, 研究者提出了众多针对深度代码模型的攻击与防御方法. 然而, 目前仍缺乏对深度代码模型安全研究的系统性综述, 不利于后续研究者对该领域进行快速的了解. 因此, 为了总结该领域研究现状、挑战及时跟进该领域的最新研究成果, 搜集32篇该领域相关论文, 并将现有的研究成果主要分为后门攻击与防御技术和对抗攻击与防御技术两类. 按照不同技术类别对所收集的论文进行系统地梳理和总结. 随后, 总结该领域中常用的实验数据集和评估指标. 最后, 分析该领域所面临的关键挑战以及未来可行的研究方向, 旨在为后续研究者进一步推动深度代码模型安全的发展提供有益指导.

    • 基于双向拟合掩码重建的多模态自监督点云表示学习

      2025, 36(5):2094-2113.DOI: 10.13328/j.cnki.jos.007187

      关键词:三维点云自监督表示学习多模态特征密度尺度生成对抗网络
      摘要 (149)HTML (25)PDF 6.73 K (1196)收藏

      摘要:点云自监督表示学习以无标签预训练的方式, 探索三维拓扑几何空间结构关系并捕获特征表示, 可应用至点云分类、分割以及物体探测等下游任务. 为提升预训练模型的泛化性和鲁棒性, 提出基于双向拟合掩码重建的多模态自监督点云表示学习方法, 主要由3部分构成: (1) 逆密度尺度指导下的“坏教师”模型通过基于逆密度噪声表示和全局特征表示的双向拟合策略, 加速掩码区域逼近真值. (2) 基于StyleGAN的辅助点云生成模型以局部几何信息为基础, 生成风格化点云并与掩码重建结果在阈值约束下融合, 旨在抵抗重建过程噪声对表示学习的不良影响. (3) 多模态教师模型以增强三维特征空间多样性及防止模态信息崩溃为目标, 依靠三重特征对比损失函数, 充分汲取点云-图像-文本样本空间中所蕴含的潜层信息. 所提出的方法在ModelNet、ScanObjectNN和ShapeNet这3种点云数据集上进行微调任务测试. 实验结果表明, 预训练模型在点云分类、线性支持向量机分类、小样本分类、零样本分类以及部件分割等点云识别任务上的效果达到领先水平.

    • 面向卷积神经网络泛化性和健壮性权衡的标签筛选方法

      2025, 36(5):2114-2129.DOI: 10.13328/j.cnki.jos.007188

      关键词:卷积神经网络对抗学习标签信息正则化
      摘要 (149)HTML (27)PDF 6.75 K (1567)收藏

      摘要:虽然卷积神经网络凭借优异的泛化性能被广泛应用在图像识别领域中, 但被噪声污染的对抗样本可以轻松欺骗训练完全的网络模型, 带来安全性的隐患. 现有的许多防御方法虽然提高了模型的健壮性, 但大多数不可避免地牺牲了模型的泛化性. 为了缓解这一问题, 提出了标签筛选权重参数正则化方法, 在模型训练过程中利用样本的标签信息权衡模型的泛化性和健壮性. 先前的许多健壮模型训练方法存在下面两个问题: 1)大多通过增加训练集样本的数量或复杂度来提高模型的健壮性, 这不仅弱化了干净样本在模型训练过程中的主导作用, 也使得训练任务的工作量大大提高; 2)样本的标签信息除了被用于与模型预测结果对比来控制模型参数的更新方向以外, 在模型训练中几乎不被另作使用, 这无疑忽视了隐藏于样本标签中的更多信息. 所提方法通过样本的正确标签和对抗样本的分类标签筛选出模型在分类该样本时起决定性作用的权重参数, 对这些参数进行正则优化, 达到模型泛化性和健壮性权衡的效果. 在MNIST、CIFAR-10和CIFAR-100数据集上的实验和分析表明, 提出的方法能够取得很好的训练效果.

    • 安卓恶意软件对抗样本攻击技术综述

      2025, 36(6):2683-2712.DOI: 10.13328/j.cnki.jos.007312

      关键词:安卓恶意软件检测对抗样本攻击AI 安全软件安全
      摘要 (89)HTML (0)PDF 5.90 M (122)收藏

      摘要:面对Android恶意软件带来的严重的安全风险, 如何有效检测Android恶意软件已成为工业界与学术界共同关注的焦点. 然而随着Android对抗样本技术的出现, 现有的恶意软件检测系统面临着前所未有的挑战. Android恶意软件对抗样本攻击通过对恶意软件的源码或特征进行扰动, 使其在保持原始功能不受影响的条件下绕过恶意软件检测模型. 尽管目前已有大量针对恶意软件的对抗样本攻击研究, 但是现阶段仍缺乏针对Android系统对抗样本攻击的完备性综述, 且并未研究Android系统中对抗样本设计的独特要求, 因此首先介绍Android恶意软件检测的基本概念; 然后从不同角度对现有的Android对抗样本技术进行分类, 梳理Android对抗样本技术的发展脉络; 随后综述近年来的Android对抗样本技术, 介绍不同类别的代表性工作并分析其优缺点; 之后, 分类介绍常用的安卓对抗样本攻击所使用的代码扰动手段并分析其应用场景; 最后讨论Android恶意软件对抗样本技术面临的挑战, 展望该新兴领域的未来研究方向.

    • 图像对抗样本检测综述

      2024, 35(1):185-219.DOI: 10.13328/j.cnki.jos.006834

      关键词:深度神经网络对抗样本检测人工智能安全图像分类
      摘要 (1899)HTML (3325)PDF 11.18 M (4261)收藏

      摘要:深度神经网络是人工智能领域的一项重要技术, 它被广泛应用于各种图像分类任务. 但是, 现有的研究表明深度神经网络存在安全漏洞, 容易受到对抗样本的攻击, 而目前并没有研究针对图像对抗样本检测进行体系化分析. 为了提高深度神经网络的安全性, 针对现有的研究工作, 全面地介绍图像分类领域的对抗样本检测方法. 首先根据检测器的构建方式将检测方法分为有监督检测与无监督检测, 然后根据其检测原理进行子类划分. 最后总结对抗样本检测领域存在的问题, 在泛化性和轻量化等方面提出建议与展望, 旨在为人工智能安全研究提供帮助.

    • 基于注意力机制的高容量通用图像隐写模型

      2024, 35(3):1502-1514.DOI: 10.13328/j.cnki.jos.006815

      关键词:图像隐写注意力机制生成对抗网络对抗样本
      摘要 (767)HTML (943)PDF 4.04 M (2399)收藏

      摘要:随着深度学习与隐写技术的发展,深度神经网络在图像隐写领域的应用越发广泛,尤其是图像嵌入图像这一新兴的研究方向.主流的基于深度神经网络的图像嵌入图像隐写方法需要将载体图像和秘密图像一起输入隐写模型生成含密图像,而最近的研究表明,隐写模型仅需要秘密图像作为输入,然后将模型输出的含密扰动添加到载体图像上,即可完成秘密图像的嵌入过程.这种不依赖载体图像的嵌入方式极大地扩展了隐写的应用场景,实现了隐写的通用性.但这种嵌入方式目前仅验证了秘密图像嵌入和恢复的可行性,而对隐写更重要的评价标准,即隐蔽性,未进行考虑和验证.提出一种基于注意力机制的高容量通用图像隐写模型USGAN,利用注意力模块,USGAN的编码器可以在通道维度上对秘密图像中像素位置的扰动强度分布进行调整,从而减小含密扰动对载体图像的影响.此外,利用基于CNN的隐写分析模型作为USGAN的目标模型,通过与目标模型进行对抗训练促使编码器学习生成含密对抗扰动,从而使含密图像同时成为攻击隐写分析模型的对抗样本.实验结果表明,所提模型不仅可以实现不依赖载体图像的通用嵌入方式,还进一步提高了隐写的隐蔽性.

    • 基于可攻击空间假设的陷阱式集成对抗防御网络

      2024, 35(4):1861-1884.DOI: 10.13328/j.cnki.jos.006829

      关键词:深度神经网络对抗样本集成学习对抗防御鲁棒性优化
      摘要 (593)HTML (851)PDF 4.32 M (1897)收藏

      摘要:如今, 深度神经网络在各个领域取得了广泛的应用. 然而研究表明, 深度神经网络容易受到对抗样本的攻击, 严重威胁着深度神经网络的应用和发展. 现有的对抗防御方法大多需要以牺牲部分原始分类精度为代价, 且强依赖于已有生成的对抗样本所提供的信息, 无法兼顾防御的效力与效率. 因此基于流形学习, 从特征空间的角度提出可攻击空间对抗样本成因假设, 并据此提出一种陷阱式集成对抗防御网络Trap-Net. Trap-Net在原始模型的基础上向训练数据添加陷阱类数据, 使用陷阱式平滑损失函数建立目标数据类别与陷阱数据类别间的诱导关系以生成陷阱式网络. 针对原始分类精度损失问题, 利用集成学习的方式集成多个陷阱式网络以在不损失原始分类精度的同时, 扩大陷阱类标签于特征空间所定义的靶标可攻击空间. 最终, Trap-Net通过探测输入数据是否命中靶标可攻击空间以判断数据是否为对抗样本. 基于MNIST、K-MNIST、F-MNIST、CIFAR-10和CIFAR-100数据集的实验表明, Trap-Net可在不损失干净样本分类精确度的同时具有很强的对抗样本防御泛化性, 且实验结果验证可攻击空间对抗成因假设. 在低扰动的白盒攻击场景中, Trap-Net对对抗样本的探测率高达85%以上. 在高扰动的白盒攻击和黑盒攻击场景中, Trap-Net对对抗样本的探测率几乎高达100%. 与其他探测式对抗防御方法相比, Trap-Net对白盒和黑盒对抗攻击皆有很强的防御效力. 为对抗环境下深度神经网络提供一种高效的鲁棒性优化方法.

    • 基于对抗生成网络的缺陷定位模型域数据增强方法

      2024, 35(5):2289-2306.DOI: 10.13328/j.cnki.jos.006961

      关键词:缺陷定位测试用例对抗生成网络数据增强可疑值
      摘要 (578)HTML (793)PDF 8.46 M (1842)收藏

      摘要:缺陷定位获取并分析测试用例集的运行信息, 从而度量出各个语句为缺陷的可疑性. 测试用例集由输入域数据构建, 包含成功测试用例和失败测试用例两种类型. 由于失败测试用例在输入域分布不规律且比例很低, 失败测试用例数量往往远少于成功测试用例数量. 已有研究表明, 少量失败测试用例会导致测试用例集出现类别不平衡问题, 严重影响着缺陷定位有效性. 为了解决这个问题, 提出基于对抗生成网络的缺陷定位模型域数据增强方法. 该方法基于模型域(即缺陷定位频谱信息)而非传统输入域(即程序输入), 利用对抗生成网络合成覆盖最小可疑集合的模型域失败测试用例, 从模型域上解决类别不平衡的问题. 实验结果表明, 所提方法大幅提升了11种典型缺陷定位方法的效能.

    • 基于龙格库塔法的对抗攻击方法

      2024, 35(5):2543-2565.DOI: 10.13328/j.cnki.jos.006893

      关键词:对抗样本黑盒攻击龙格库塔法迁移性
      摘要 (517)HTML (914)PDF 5.32 M (1847)收藏

      摘要:深度神经网络在许多领域中取得了显著的成果, 但相关研究结果表明, 深度神经网络很容易受到对抗样本的影响. 基于梯度的攻击是一种流行的对抗攻击, 引起了人们的广泛关注. 研究基于梯度的对抗攻击与常微分方程数值解法之间的关系, 并提出一种新的基于常微分方程数值解法-龙格库塔法的对抗攻击方法. 根据龙格库塔法中的预测思想, 首先在原始样本中添加扰动构建预测样本, 然后将损失函数对于原始输入样本和预测样本的梯度信息进行线性组合, 以确定生成对抗样本中需要添加的扰动. 不同于已有的方法, 所提出的方法借助于龙格库塔法中的预测思想来获取未来的梯度信息(即损失函数对于预测样本的梯度), 并将其用于确定所要添加的对抗扰动. 该对抗攻击具有良好的可扩展性, 可以非常容易地集成到现有的所有基于梯度的攻击方法. 大量的实验结果表明, 相比于现有的先进方法, 所提出的方法可以达到更高的攻击成功率和更好的迁移性.

    上一页123456
    共7页64条记录 跳转到GO

您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号