查 询 高级检索+
共找到相关记录46条
    全 选
    显示方式:|
    • 面向复杂约束优化问题的进化算法综述

      2023, 34(2):565-581.DOI: 10.13328/j.cnki.jos.006711

      关键词:约束优化进化算法多目标高维高计算开销等式约束
      摘要 (2007)HTML (4192)PDF 2.07 M (6279)收藏

      摘要:约束优化是多数实际工程应用优化问题的呈现方式.进化算法由于其高效的表现,近年来被广泛应用于约束优化问题求解.但约束条件使得问题解空间离散、缩小、改变,给进化算法求解约束优化问题带来极大挑战.在此背景下,融合约束处理技术的进化算法成为研究热点.此外,随着研究的深入,近年来约束处理技术在复杂工程应用问题优化中得到了广泛发展,例如多目标、高维、等式优化等.根据复杂性的缘由,将面向复杂约束优化问题的进化优化分为面向复杂目标的进化约束优化算法和面向复杂约束场景的进化算法两种类别进行综述,其中,重点探讨了实际工程应用的复杂性对约束处理技术的挑战和目前研究的最新进展,并最后总结了未来的研究趋势与挑战.

    • MaOEA/d2:一种基于双距离构造的高维多目标进化算法

      2023, 34(4):1523-1542.DOI: 10.13328/j.cnki.jos.006702

      关键词:进化算法高维多目标优化问题多样性收敛性高维多目标进化算法
      摘要 (1379)HTML (2019)PDF 2.52 M (2924)收藏

      摘要:传统的基于Pareto支配关系的多目标进化算法(MOEA)难以有效求解高维多目标优化问题(MaOP). 提出一种利用PBI效用函数的双距离构造的支配关系, 且无需引入额外的参数. 其次, 利用双距离定义了一种多样性保持方法, 该方法不仅考虑了解个体的双距离, 而且还可以根据优化问题的目标数目自适应地调整多样性占比, 以较好地平衡高维目标解群的收敛性和多样性. 最后, 将基于双距离构造的支配关系和多样性保持方法嵌入到NSGA-II算法框架中, 设计了一种基于双距离的高维多目标进化算法MaOEA/d2. 该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ和WFG基准测试问题上进行了IGD和HV性能测试, 结果表明, MaOEA/d2算法具有较好的收敛性和多样性. 由此表明, MaOEA/d2算法是一种颇具前景的高维多目标进化算法.

    • 基于帕累托前沿面曲率预估的超多目标进化算法

      2023, 34(9):4096-4113.DOI: 10.13328/j.cnki.jos.006648

      关键词:超多目标优化|进化算法|曲率预估|参考向量|环境选择
      摘要 (1080)HTML (1368)PDF 6.98 M (3068)收藏

      摘要:基于分解的超多目标进化算法是求解各类超多目标优化问题的主流方法, 其性能在很大程度上依赖于所采用参考向量与真实帕累托前沿面(Pareto front, PF)的匹配程度. 现有基于分解的超多目标进化算法尚难以同时有效处理各类PF不同的优化问题. 为此, 提出了一种基于PF曲率预估的超多目标进化算法(MaOEA-CE). 所提算法的核心包括两个方面, 首先基于对PF曲率的预估, 在每次迭代过程中生成不同的参考向量, 以渐进匹配不同类型问题的真实PF; 其次在环境选择过程中, 再基于预估的曲率选择合适的聚合函数对精英解进行挑选, 并对参考向量进行动态调整, 在维护种群多样性的同时提升种群的收敛性. 为验证MaOEA-CE的有效性, 将其与7个先进的超多目标算法在3个主流测试问题集DTLZ、WFG和MaF上进行对比, 实验结果表明MaOEA-CE具有明显的竞争力.

    • 基于分解的演化多目标优化算法综述

      2023, 34(10):4743-4771.DOI: 10.13328/j.cnki.jos.006672

      关键词:多目标优化演化算法分解MOEA/D
      摘要 (1830)HTML (3352)PDF 26.10 M (5476)收藏

      摘要:基于分解的演化多目标优化算法(MOEA/D)的基本思想是将一个多目标优化问题转化成一系列子问题 (单目标或者多目标)来进行优化求解. 自2007年提出以来, MOEA/D受到了国内外学者的广泛关注, 已经成为最具代表性的演化多目标优化算法之一. 总结过去13年中关于MOEA/D的一些研究进展, 具体内容包括: (1)关于MOEA/D的算法改进; (2) MOEA/D在超多目标优化问题及约束优化问题上的研究; (3) MOEA/D在一些实际问题上的应用. 然后, 实验对比几个具有代表性的MOEA/D改进算法. 最后, 指出一些MOEA/D未来的研究方向.

    • 基于演化深度强化学习的符号网络影响最大化研究

      2023, 34(11):5084-5112.DOI: 10.13328/j.cnki.jos.006728

      关键词:符号网络影响最大化演化算法深度强化学习
      摘要 (664)HTML (1371)PDF 10.34 M (2292)收藏

      摘要:近年来, 随着互联网信息传播以及新型冠状病毒COVID-19传播链阻断等重大应用问题的出现, 社会网络影响最大化问题的研究受到了科学界广泛关注. 影响最大化问题旨在根据特定应用问题的传播模型, 识别出最优影响种子节点集, 最大化其信息传播影响. 现有影响最大化算法主要针对单连接影响传播模型, 将影响最大化问题模拟为离散的影响力种子节点组合选取优化问题. 然而, 这些算法具有较高的计算时间复杂度, 且无法解决具有大规模冲突关系的符号网络影响最大化问题. 针对上述问题, 首先, 构建适用于符号网络的正负影响传播模型以及影响最大化优化模型. 其次, 通过引入由神经网络构成的deep Q network来选取种子节点集, 将离散的种子节点组合选取问题转化为更易优化的网络权重连续优化问题. 最后, 提出基于演化深度强化学习的符号网络影响最大化算法SEDRL-IM. 该算法将演化算法的个体视作策略, 结合演化算法的无梯度全局搜索以及强化学习的局部搜索特性, 实现对deep Q network权重优化问题解的有效搜索, 从而找到最优影响种子节点集. 在基准符号网络以及真实社交网络数据集上的大量实验结果表明, 所提算法在影响传播范围与求解效率上都优于经典的基准算法.

    • 基于多样性分类和距离回归的进化算法

      2022, 33(10):3700-3716.DOI: 10.13328/j.cnki.jos.006310

      关键词:代理模型进化算法超多目标优化昂贵问题随机森林Kriging
      摘要 (594)HTML (1551)PDF 2.56 M (2055)收藏

      摘要:提出了一个基于多样性分类和距离回归的进化算法(DCDREA),以解决昂贵超多目标优化问题(MaOPs).DCDREA采用随机森林(RF)作为全局分类代理模型,它把种群中所有解作为训练样本,并根据是否为最小相关解,把训练样本分类为正负样本,使模型学习到训练样本中含有的分类标准.全局分类代理模型主要用来筛选新产生的候选解,以得到一组有希望的候选解.此外,它采用Kriging作为局部回归代理模型,其选择种群中距离当前候选解最近的解作为训练样本,拟合训练样本与理想点的距离.然后,通过K-means方法把候选解划分为μ个簇,并从每个簇中选择一个用于真实评估的候选解.在实验部分,使用大规模3、4、6、8、10目标的DTLZ测试问题集,把DCDREA与目前流行的代理辅助进化算法进行对比实验.对于不同测试问题,每个算法独立运行20次,然后统计反向迭代距离(IGD)和算法运行时间.最后,使用秩和检验来分析结果.实验对比结果表明,DCDREA在大多数情况下表现更好.由此可见,DCDREA具有较好的有效性和可行性.

    • 软硬件节能原理深度融合之绿色异构调度算法

      2021, 32(12):3768-3781.DOI: 10.13328/j.cnki.jos.006133

      关键词:虚拟云异构调度绿色计算协同进化算法动力方程节能原理深度融合
      摘要 (576)HTML (1726)PDF 1.72 M (2463)收藏

      摘要:虚拟云高性能向高效能计算演进,已是环境保护、人类可持续发展的迫切需求.然而目前,一方面,硬件级物理节能空间需要适度延展;另一方面,以遗传或人工免疫算法为代表的元启发式调度中间件大多存在进化动力不足,以致收敛性和分布性冲突难平衡等瓶颈.事实上,每个候选解(调度方案)都蕴含一定的物理反馈效应,而拟配资源的非线性和异构性,则意味着不同方案间与能效相关的实时动态反馈的巨大差异化.因此,尊重科学规律,巧妙地借力于硬件节能原理,给算法优化动力注入新能量,并进一步增强软件方法的节能主导性,是本文研究方法;继而提出一种着眼于软硬件节能原理深度融合的新的绿色异构调度算法(GHSA_di/Ⅱ),以多角度、全方位提升元启发式算法之协同进化模拟的内驱力.大量仿真实验结果显示:无论对于数据密集型还是计算密集型实例,GHSA_di/Ⅱ算法较其他3种元启发式异构调度算法,在整体性能、节能降耗以及可扩展性等方面都具明显优势.

    • 面向多目标优化的多样性代理辅助进化算法

      2021, 32(12):3814-3828.DOI: 10.13328/j.cnki.jos.006109

      关键词:代理模型进化算法多目标优化昂贵问题参考向量模型管理Kriging
      摘要 (989)HTML (2124)PDF 1.57 M (3315)收藏

      摘要:代理辅助进化算法(SAEA)是目前解决昂贵优化问题的一种有效途径.提出一种基于多样性的代理辅助进化算法(DSAEA)来解决昂贵多目标优化问题.DSAEA采用Kriging模型近似每个目标来代替原目标函数进行评估,加速了进化算法的优化过程.其引入参考向量把问题分解为多个子问题,根据解与参考向量之间的角度大小建立它们的相关性,然后计算出最小相关解集.在此基础上,候选解生成算子和选择算子会趋向于保留多样性的解.另外,训练集A在每次迭代后会进行更新,根据多样性删除价值不大的样本以减少建模时间.实验部分对DSAEA与目前流行的代理辅助进化算法在大规模2目标和3目标优化问题上进行对比实验.每个算法在不同的测试问题上分别独立运行30次,并计算和统计反向迭代距离(IGD)、超体积(HV)和运行时间,最后使用秩和检验分析实验结果.结果表明:DSAEA在多数实验测试问题上表现更好,因此具有有效性和可行性.

    • 一种基于分解和协同的高维多目标进化算法

      2020, 31(2):356-373.DOI: 10.13328/j.cnki.jos.005617

      关键词:高维多目标优化分解策略混合水平正交实验设计高维多目标进化算法
      摘要 (2381)HTML (2589)PDF 1.83 M (4286)收藏

      摘要:现实中大量存在的高维多目标优化问题对以往高效的多目标进化算法提出了严峻的挑战.通过将分解策略和协同策略相结合提出一种高维多目标进化算法MaOEA/DCE.该算法利用混合水平正交实验方法在聚合系数空间产生一组均匀分布的权重向量以改善初始种群的分布性;其次,算法将差分进化算子和自适应SBX算子进行协同进化,以产生高质量的子代个体,并改善算法的收敛性.该算法与另外5种高性能的多目标进化算法在基准测试函数集DTLZ{1,2,4,5}上进行对比实验,利用改进的反转世代距离指标IGD+评估各算法的性能.实验结果表明,MaOEA/DCE算法与其他对比算法相比,在总体上具有较为显著的收敛性和分布性优势.

    • 基于频繁模式挖掘的GCC编译时能耗演化优化算法

      2019, 30(5):1269-1287.DOI: 10.13328/j.cnki.jos.005734

      关键词:软件能耗编译优化嵌入式软件演化算法
      摘要 (2886)HTML (2922)PDF 2.19 M (6170)收藏

      摘要:演化算法通过搜寻GCC编译器最优编译选项集,对可执行代码的能耗进行改进,以达到编译时优化嵌入式软件能耗的目的.但这类算法未考虑多个编译选项之间可能存在相互影响,导致了其解质量不高且收敛速度慢的问题.针对这一不足,设计了一种基于频繁模式挖掘的遗传算法GA-FP.该算法在演化过程中利用频繁模式挖掘得到出现频度高且能耗改进大的一组编译选项,并以此作为启发式信息,设计了增添和删减两种变异算子,帮助提高解质量和加快收敛速度.与Tree-EDA算法在5个不同领域的8个典型案例下进行对比实验,结果表明,该GA-FP算法不仅能够更有效地降低软件能耗(平均降低2.5%,最高降低21.1%),而且还能在获得不劣于Tree-EDA能耗优化效果的前提下更快地收敛(平均加快34.5%,最高加快83.3%),最优解中编译选项的相关性分析进一步验证了所设计变异算子的有效性.

    上一页12345
    共5页46条记录 跳转到GO

您是第19699758位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号