2023, 34(7):3343-3353.DOI: 10.13328/j.cnki.jos.006529
摘要:安全多方计算是国际密码学的研究热点之一,保密计算集合交集元素之和问题是安全多方计算比较新的问题之一.该问题在工商业、医疗健康等领域具有重要的理论意义和实用价值.现有解决方案是在有全集情况下设计的,在计算过程中会泄露交集的势且存在一定的误判.在半诚实模型下基于Paillier同态加密算法设计了3个协议,协议1计算共有标识符的数量(即用户标识符交集的势)以及与这些用户相关联的整数值之和,协议2和协议3是在不泄露交集势的情况下计算交集元素关联值之和.整个计算过程不泄露关于协议双方私人输入的任何更多信息.所提协议是在无全集情况下设计的,采用模拟范例证明了所设计协议的安全性,用实验验证协议的高效性.
2022, 33(11):4316-4333.DOI: 10.13328/j.cnki.jos.006326
摘要:安全多方计算(secure multi-party computation,SMC)是国际密码学界近年来的研究热点.排序是一种基本的数据操作,是算法研究中最基础的问题.多方保密排序是百万富翁问题的推广,是一个基本的SMC问题,在科学决策、电子商务推荐、保密招标/拍卖、保密投票以及保密数据挖掘等方面有重要应用.目前已有的安全多方排序解决方案大多只能适用于隐私数据范围已知而且范围较小的情况,如果数据范围未知或者数据范围很大,还未见到有效的解决方案.首先,在数据范围已知情形下,针对同数据并列计位以及增位次计位两种不同排序方式设计保密计算协议,进一步设计基于关键词的增位次计位方式保密排序协议;其次,以这些协议为基础,在数据范围未知的情形下,针对上述两种不同排序方式分别构造有效的保密排序方案.应用该排序协议作为模块,可解决许多以排序为基础的实际应用问题.最后设计了一个安全、高效的保密Vickrey招投标协议,以解决实际保密招标问题.通过灵活运用编码技巧,并基于ElGamal门限密码体制设计协议,这些协议在半诚实模型下是安全、高效的.应用模拟范例严格证明了协议的安全性,并对协议的执行效率进行了实际测试.实验结果表明,该协议是高效的.
2022, 33(12):4771-4783.DOI: 10.13328/j.cnki.jos.006361
摘要:互联网、物联网和大数据的迅速发展,为数据共享带来了无限的机遇,也给私有数据的隐私保护带来了严峻的挑战.安全多方计算是数据共享中隐私保护的关键技术,是密码学的一个重要研究方向,也是国际密码学界研究的热点.保密比较两个数的大小是安全多方计算的一个基本问题,是构建其他隐私保护协议的一个基本模块.当比较的数较小时,还没有可靠的能够抵抗主动攻击的保密比较问题解决方案.很多应用场景中的参与者可能会发动主动攻击,因为尚没有抗主动攻击的保密比较协议,这些场景中的保密比较问题还无法解决.因而研究抗主动攻击的保密比较问题解决方案有重要理论与实际意义.提出了一种加密-选择安全多方计算模式和编码+保密洗牌证明的抵抗主动攻击方法.在此基础上,设计了半诚实模型下安全的保密比较协议,用模拟范例证明了协议的安全性;分析了恶意参与者可能实施的主动攻击,结合ElGamal密码系统的乘法同态性、离散对数与保密洗牌的零知识证明设计阻止恶意行为的措施,将半诚实模型下安全的保密比较协议改造成抗主动攻击的保密比较协议,并用理想-实际范例证明了协议的安全性.最后分析了协议的效率,并通过实验验证协议是可行的.