查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于前馈神经网络的编译器测试用例生成方法

      2022, 33(6):1996-2011.DOI: 10.13328/j.cnki.jos.006565

      关键词:软件缺陷编译器模糊测试深度学习前馈神经网络抽象语法树
      摘要 (1929)HTML (2968)PDF 1.69 M (4569)收藏

      摘要:编译器模糊测试,是测试编译器功能性与安全性的常用技术之一.模糊测试器通过产生语法正确的测试用例,对编译器的深层代码展开测试.近来,基于循环神经网络的深度学习模型被引入编译器模糊测试用例生成过程.针对现有方法生成测试用例的语法正确率不足、生成效率低的问题,提出一种基于前馈神经网络的编译器模糊测试用例生成方法,并设计实现了原型工具FAIR.与现有的基于token序列学习的方法不同,FAIR从抽象语法树中提取代码片段,利用基于自注意力的前馈神经网络捕获代码片段之间的语法关联,通过学习程序设计语言的生成式模型,自动生成多样化的测试用例.实验结果表明,FAIR生成测试用例的解析通过率以及生成效率均优于同类型先进方法.该方法显著提升了检测编译器软件缺陷的能力,已成功检测出GCC和LLVM的20处软件缺陷.此外,该方法具有良好的可移植性,简单移植后的FAIR-JS已在JavaScript引擎中检测到两处软件缺陷.

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份

您是第19734987位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号