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摘　要: 结构化数据分析通常需要在表格数据的多维属性上执行联合范围查询, 高效的多维索引因此成为数据库

系统的关键支撑. 然而, 现有多维索引方法在高维场景下存在局限: 传统多维索引仅按数据分布进行均匀划分, 缺

乏对查询特征的感知, 导致筛选效果有限; 而现有学习型多维索引虽引入查询感知, 但划分往往极不均匀, 使部分

单元过大, 扫描成本显著增加. 为了解决上述问题, 提出一种新型的 LA-tree学习型树形多维索引, 同时兼顾数据分

布与查询负载感知. 在离线构建阶段, LA-tree 将节点维度选择建模为最小化查询扫描比的问题, 并提出分层贪心

搜索算法, 实现了均匀划分与查询感知的统一. 在在线查询阶段, 引入轻量线性模型与分段线性模型, 将传统的数

值比较转化为快速映射计算, 在保证结果完整性的同时显著降低筛选延迟. 在动态场景中, 提出基于扫描量监控的

自适应增量更新机制, 通过局部子树重构高效适配数据与查询负载的变化, 避免了整体索引重建的高昂代价. 实验

结果表明, LA-tree在多个真实和基准数据集上均显著优于现有方法: 在静态场景中查询用时较最佳基准方法平均

降低 52%, 在动态场景中更新开销较重构方法减少 97%, 同时保持低查询延迟与轻量级索引规模.
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Abstract:  Structured  data  analysis  typically  requires  performing  multi-attribute  queries  over  tabular  data,  making  efficient  multi-

dimensional  indexes  key  support  for  database  systems.  However,  existing  multi-dimensional  indexing  methods  face  limitations  in  high-

dimensional  scenarios.  Traditional  multi-dimensional  indexing  methods  partition  data  uniformly  based  on  data  distribution  but  lack  the

awareness  of  query  features,  resulting  in  limited  filtering  effectiveness.  In  contrast,  although  existing  learned  multi-dimensional  indexes

introduce  query-awareness,  they  often  produce  highly  unbalanced  partitions,  thereby  resulting  in  some  oversized  partitions  and  substantially

increased  scanning  costs.  To  this  end,  this  study  proposes  LA-tree,  a  novel  learned  tree-based  multi-dimensional  index  that  balances  both

data  distribution  and  query  workload  awareness.  In  the  offline  construction  phase,  LA-tree  formulates  the  selection  of  partitioning

dimensions  at  each  node  as  an  optimization  problem  of  minimizing  the  overall  scan  ratio  of  the  query  workload,  and  puts  forward  a

hierarchical  greedy  search  algorithm  to  achieve  the  unity  of  uniform  partitioning  and  query-awareness.  In  the  online  query  phase,  the
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lightweight  linear  model  and  piecewise  linear  model  are  introduced  to  transform  traditional  numerical  comparisons  to  fast  mapping
computations,  thereby  reducing  filtering  latency  while  ensuring  the  completeness  of  query  results.  In  dynamic  settings,  an  adaptive
incremental  update  mechanism  based  on  scan  volume  monitoring  is  proposed  to  efficiently  adapt  to  changes  in  data  and  query  workloads
via  local  subtree  reconstruction,  thereby  avoiding  the  high  cost  of  rebuilding  the  entire  index.  Experimental  results  demonstrate  that  LA-
tree  outperforms  existing  methods  on  multiple  real-world  and  benchmark  datasets.  In  static  settings,  the  query  time  is  reduced  by  an
average  of  52%  compared  with  the  optimal  benchmark  method,  while  in  dynamic  settings,  the  update  costs  are  reduced  by  97%  compared
with the reconstruction methods. Additionally, low query latency and lightweight index scale are maintained.
Key words:  learned multi-dimensional index; query-aware; index update

索引结构对数据库查询性能至关重要. 随着数据维度的增加, 数据库查询通常在多个属性上包含等值或范围

谓词, 单维索引难以同时利用多维条件, 导致大量无效扫描. 相比之下, 多维索引能够在多个维度上联合组织和过滤

数据, 从而显著减少冗余访问并提升查询效率. 因此, 高效的多维索引已成为支持现代数据管理与分析的关键技术.
现有多维数据索引方法, 如 KD-tree[1]、Octree[2]、Qd-tree[3]、Flood[4]和 Tsunami[5], 普遍采用空间划分的方式

来提升多维查询性能. 在离线阶段, 这类方法将数据映射到多维空间并划分为若干单元 (cell); 在在线查询阶段, 采
用一种“先筛选、后扫描”的框架, 即首先通过多维索引筛选出与查询范围有交集的单元, 再扫描单元内的数据以

生成查询结果. 通过在筛选阶段排除大量位于查询范围之外的数据, 这一框架可以有效减少数据扫描量, 从而提升

查询效率. 具体而言, 根据拟合数据分布的方法, 现有方法可以分为两类.
● 学习型多维索引 Flood和 Tsunami通过网格 (grid)[6]结构拟合多维数据分布. Flood直接通过学习型网格沿

各维度独立地对数据进行划分, 从而建立多维索引. 为了解决多维数据普遍存在的维度间相关性, 需要引入条件分

布增强网格以拟合数据的多维联合分布, 然而时间与空间开销关于相关维度数量呈指数级增长. Tsunami 通过

Grid-Tree结构根据查询负载将数据划分为多个子集, 分别用网格拟合数据分布, 同样无法克服网格拟合多维相关

性的弱点. 因此该类方法仅适用于低维数据场景, 在维度较高 (如 10维以上)的场景下效率不高.
● 树形多维索引结构 (如 KD-tree、Octree、Qd-tree等)通过递归划分数据空间拟合多维数据分布, 将数据组

织为层次化的树结构, 不仅能够自适应数据的多维联合分布, 还支持高效的层次化剪枝策略, 因此可以快速排除与

查询条件无关的单元. 与基于网格的索引相比, 树形索引在维度的可扩展性和空间利用率上更具潜在优势.
基于此, 本文重点研究基于树形结构的学习型多维索引. 现有研究 [3−5]表明, 当前多维索引在查询过程中仍存

在大量查询范围之外的数据未能在筛选阶段被有效排除, 从而导致扫描量大、扫描时间长, 成为影响查询效率的

核心瓶颈. 因此, 本文聚焦优化多维索引的筛选问题, 具体而言: 一方面在离线索引构建阶段优化数据划分, 另一方

面在在线查询中提升筛选效率, 最终提升多维索引的整体性能.
然而, 现有的树形多维索引在筛选效果上仍存在局限性. 传统多维索引结构 KD-tree[1]采用递归的空间均匀划

分, 能够在叶子节点上保持数据量基本平衡. 但其划分策略完全独立于查询负载. 然而, 真实情况下, 查询负载并不

随机, 而是具有一定的查询模式 (query pattern), 即在多维数据的不同属性维度和范围上冷热不均, KD-tree[1]难以

针对查询负载对数据划分进行优化, 导致查询需访问过多单元 (即索引的叶子节点). 与此相对, Qd-tree[3]通过学习

查询负载, 在高频查询边界处划分数据, 从而可以避免查询访问过多的单元. 然而, 由于划分仅依赖于查询模式, 而
不考虑数据分布, 单元间数据量往往极不均衡, 部分单元可能包含大量数据, 依然增加了数据扫描量. 由此可见, 现
有树形多维索引方法难以兼顾“均匀划分”与“查询感知”.

针对上述问题, 本文提出了一种新型的学习型多维索引 LA-tree, 在均匀划分的基础上引入查询感知优化, 从
而兼顾了数据分布平衡与查询模式适应性. 图 1 给出了 LA-tree 与现有树形多维索引方法的对比示意: 下层 3 幅

图展示了在给定多维数据 (灰色散点)与查询负载训练集 (绿色方框)上的离线数据划分结果; 上层 3幅图则对比

了在线查询阶段的筛选效果. 结果显示, KD-tree (图 1(a))因缺乏查询感知, 筛选不充分, 需扫描的大量灰色区域导

致扫描量偏高; Qd-tree (图 1(b))虽能针对查询模式优化, 但划分极不均匀. 尽管查询需要访问的单元个数减少, 但
需在包含大量蓝色散点的单元中扫描, 依然导致较大的扫描量; 而本文提出的 LA-tree (图 1(c))在保持均匀划分的

同时融入查询感知优化, 有效减少了需扫描的单元与数据量, 显著提升了查询效率.
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为实现高效的多维数据查询, 本文围绕 LA-tree索引面临的 3个关键技术挑战进行研究.

挑战 1: 离线索引构建. 在树形索引递归划分多维数据时, 需要同时保证划分的均匀性与查询感知, 这一过程

因数据分布与查询负载的复杂性而极具挑战. 为此, 本文将问题建模为节点划分维度选择优化, 提出多层次查询感

知的数据划分方法: 通过高效估计不同维度对查询扫描比的影响, 并结合多级搜索贪心算法, 自顶向下地生成树形

划分结构, 从而在保证均匀性的同时提升查询性能.

挑战 2: 在线查询处理. 在线查询阶段的核心在于快速且准确地定位与查询范围相交的单元, 并高效完成筛选.

然而, 树结构往往包含大量节点, 叶子节点对应的单元也存储多条数据, 传统依赖数值比较的方法会导致计算开销

过大. 为此, 本文提出基于学习模型的高效在线筛选方法: 在中间节点与叶子节点分别引入轻量化模型, 实现查询

边界到数据位置的快速映射, 从而有效减少扫描量并避免频繁的数值比较. 同时, 通过误差界限约束保证模型筛选

的正确性, 确保筛选与扫描结果的完整性.

挑战 3: 动态更新. 在动态场景下, 数据更新会破坏索引划分的均匀性, 而查询负载的变化也可能使原有的查

询感知划分失效. 直接重建索引虽能恢复性能, 但开销过高, 不适合频繁更新. 为此, 本文提出自适应增量更新方

法: 通过轻量化模型快速定位更新数据的位置, 实现低开销的增量更新. 同时, 实时监控数据分布和查询负载变化

对扫描量的影响, 自动触发局部子树重构, 从而在无需整体重建的情况下持续保持低查询延迟.
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图 1　多维索引不同的数据划分方式对查询性能的影响
 

总结起来, 本文的主要贡献如下.

(1) 提出 LA-tree索引结构. 设计了一种基于学习型空间划分多叉树结构的多维索引 LA-tree, 在同一框架下实

现了“均匀划分”与“查询感知”, 解决了传统 KD-tree与 Qd-tree在数据划分上的局限性.

(2) 针对 LA-tree设计了高效的算法. 分别设计了多层次查询感知的数据划分方法、基于学习模型的高效在线

筛选方法, 以及自适应增量更新方法, 有效地解决了离线索引构建、在线查询处理和动态更新这 3大挑战.

(3) 在多种数据集和查询负载下进行了充分的实验. 在权威的基准数据集上, LA-tree在静态场景下平均查询

用时相比已有最佳方法减少约 52%, 且在高维查询下优势更加显著. 在动态场景中, 自适应增量更新方法使索引更

新用时相比定期重构减少 97%, 同时保持低查询延迟和较小的索引规模, 验证了 LA-tree在性能上的优势.
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本文第 1 节给出问题定义, 介绍多维查询与学习型索引的基本概念. 第 2 节描述 LA-tree 的索引结构与整体

算法框架. 第 3节提出多层次查询感知的数据划分方法. 第 4节提出基于学习模型的高效在线筛选方法. 第 5节进

一步探讨自适应增量更新机制, 以应对动态场景下的数据和查询负载变化. 在第 6节中, 我们通过多种数据集和查

询负载的实验, 评估了 LA-tree 在静态与动态环境下的性能表现. 第 7 节回顾相关研究工作. 最后, 第 8 节对全文

进行总结.

 1   问题定义

本文针对多维结构化数据上的范围/等值查询, 研究高效多维索引的构建与查询处理问题. 本节将介绍所需的

基本概念, 并给出问题的形式化定义.

n d T n T =

{t1, t2, . . . , tn} d A = {a1,a2, . . . ,ad} d tl =
⟨
vt l ,a1
,vt l ,a2
, . . . ,vt l ,ad

⟩
T a j n T a j =

[
vt1 ,a j ,vt2 ,a j , . . . ,vtn ,a j

]

● 多维数据: 根据多维数据模型 [7,8]定义多维数据, 数据表包含多行多列 (属性), 每行代表一条数据记录, 对应

一个多维空间内的点; 每列代表一个属性, 对应多维空间的一个维度. 例如, TPC-H交易订单数据表 Lineitem以价

格、货量、折扣等多个维度描述交易数据. 形式化地, 考虑一个    行    列的数据表   , 包含    条数据记录  

, 以及   个维度  , 每条记录可以表示为一个   维向量  , 而对数据

表   取单独一维度   投影, 即为一大小为   的数组  .

● 多维查询: 在多维数据的基础上定义多维查询. 用户经常从多个角度同时查询多维数据, 例如, 对于 TPC-H
交易订单事实数据表 Lineitem, 筛选出同时满足价格小于等于 2 000 000、货量大于等于 10、折扣小于等于 5的订

单, 即是一条典型的多维查询, “SELECT * FROM LINEITEM T WHERE L_EXTENDEDPRICE<=2000000 AND
L_QUANTITY>=10 AND L_DISCOUNT<=5;”. 本文聚焦多维数据上的范围查询, 也可很自然地推广至等值查询.
形式化地, 定义多维查询, 一条同时包含多个范围约束谓词 (涵盖点查询)的 SQL查询形如:

. . .SELECT * FROM T WHERE P1 AND P2 AND   AND Pp;
a j lbx ⩽ a j ⩽ ubx

T q : [lbq,a1 ,ubq,a1 ]∧
[lbq,a2 ,ubq,a2 ]∧ . . .∧ [lbq,ad ,ubq,ad ] [lbq,a j ,ubq,a j ] q

a j [min {T a j } ,max {T a j }]

其中, 每个范围约束谓词 Px 作用在某个维度 (如  ) 上:  . SQL 查询的谓词也可以拓展到含 OR 逻辑

连词的情形, 可以被转化为析取范式加以处理. 本文遵循多维索引研究的惯例, 为更好突出多维属性范围查询, 针
对谓词仅包含 AND 逻辑连词的查询展开讨论. 注意到多条范围约束可能作用在同一维度上, 显然可以合并这些

谓词, 最终将多维属性范围查询描述为多维数据   对应的有限多维空间中的一个超立方体范围: 
, 其中每个范围   的两端也可以闭区间或开区间. 特别地, 若查询   在某维

度   上没有任何约束条件, 则相应范围约束等价于该维度值域范围  .
Q =

{
q1,q2, . . . ,q|Q|

}
Q● 查询负载: 在查询定义的基础上, 定义查询负载   为查询的集合. 通常, 一个查询负载   中

的查询并非完全随机的, 而是具有一定的分布特征, 比如每条查询谓词的维度组合服从一定的分布, 以及每条查询

对应超立方体的位置和大小服从一定的分布.
T q IT (q)● 问题定义: 最后给出多维索引功能, 即检索查询结果的形式化定义. 在数据   上在线查询  , 索引   返回

查询范围内的所有数据条目行号集合, 即: 

IT (q) =
{
i | lbq,a j ⩽ vti ,a j ⩽ ubq,a j , ti ∈ T,∀a j ∈ A

}
(1)

利用多维索引进行查询处理时, 一般包括两个基本的步骤.
● 步骤 1: 筛选. 根据查询谓词约束, 过滤掉不相关的数据, 留下可能满足查询条件的候选扫描集.
● 步骤 2: 扫描. 将候选扫描集中的每一条数据与查询谓词进行对比, 得出最终的查询结果.

I′T (q) I′′T (q)这里, 不妨将索引的筛选和扫描步骤输出的结果分别表示为两个单独的集合   和  , 得到: 

I′T (q) =
{
i | vti ,a j ∈ Rq, ti ∈ T,∀a j ∈ A

}
(2)

Rq q q ⊆ Rq

IT (q) = I′′T (q) =
{
i | lbq,a j ⩽ vti ,a j ⩽ ubq,a j , i ∈ I′T (q),∀a j ∈ A

}
Rq q

∣∣∣I′T (q)
∣∣∣

ScanRatio(IT (q))

其中,   是索引根据查询   的谓词范围筛选出的一个更粗略的空间范围, 保证  . 结合公式 (1) 和公式 (2) 得
到  , 其中   包含   越紧, 候选扫描集大小   越小, 索引扫

描耗时越少, 也即索引筛选效果越好. 这里我们引出度量索引筛选效果的一个重要指标: 扫描比  ,
即候选扫描集大小相对最终查询结果集大小的比值. 具体计算如下: 
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ScanRatio(IT (q)) =

∣∣∣I′T (q)
∣∣∣

|IT (q)| (3)

显然, 扫描比大于等于 1, 其数值越小, 说明索引筛选效果越好, 即在相同查询条件下需要扫描的数据量越少.

 2   自适应学习型多维索引 LA-tree

针对结构化数据多维查询, 本文提出一种查询感知的学习型多维索引 LA-tree. 本节首先介绍 LA-tree的基本

结构, 随后分别介绍其离线索引构建、在线查询处理和自适应更新问题.

 2.1   LA-tree 的基本结构

图 2为 LA-tree的基本结构, (a)为 LA-tree的基本结构, (b)为所对应的空间划分情况. 如图 2(a)所示, LA-tree
采用了与 KD-tree[1]、Qd-tree[3]类似的树形多维索引结构, 其基本结构是一棵空间划分多叉树. 下面从索引功能, 即
检索查询结果的角度, 对 LA-tree的基本结构进行形式化描述, 递归定义各节点的索引功能.
  

WHERE 7≤X≤10

AND 45≤Y≤82;

X

Y X Y

X Y Y

3717

6130

6 11 33 38 12 15
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(a) LA-tree结构
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(b) LA-tree数据划分
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q: SELECT* FROM T

CDF(X)

图 2　LA-tree总览
 

Nk TNk

TNk

形式化地, 在公式 (1)的基础上, 记 LA-tree上的任意一节点为  , 其对应数据子集为  . 由于每个节点都可

视为一棵 LA-tree子树的根, 因此其本身可以作为对应数据子集   上的索引, 查询结果表示为: 

ITNk
(q) =

{
i | lbq,a j ⩽ vti ,a j ⩽ ubq,a j , ti ∈ TNk ,∀a j ∈ A

}
(4)

Nk下面根据节点   类型的不同, 即中间节点或叶子节点, 给出更为具体的定义.
Nk aNk TNk b Nk

CNk =
{
CNk ,1,CNk ,2, . . . ,CNk ,b

}
b−1 UNk =

{
uNk ,1, . . . ,uNk ,b−1

}
q Nk

● 若   是中间节点, 它将数据按划分维度   将数据子集   划分为   个等量子集, 并将其对应到   的子节

点   中, 并产生   个分位点  . 显然, 任意查询   在   上的查询结果

等于其在所有子节点查询结果的并集, 即有: 

ITNk
(q) =

∪
lbq,aNk

⩽uNk ,c∧ubq,aNk
>uNk ,c−1

ITNCNk ,c
(q) (5)

Nk● 若节点   为叶子节点, 则对应一个单元 (cell), 其中存储若干数据记录. 通过设置叶子节点来终止递归划分,
可以有效控制树的深度, 避免过多的空间开销与性能消耗.

I =
{
N1,N2, . . . ,N|I|

}
q

q

上述从索引查询结果的角度定义了树形索引各节点的功能, 对于树形索引这一对象本身, 我们定义其为包含

所有节点的集合  . 图 2展示了一个二维数据空间下的 LA-tree示例 (为简便起见, 本文以 X和 Y
表示数据的两个属性维度), 其中, 图 2(a)是 LA-tree的结构示意图, 其中浅蓝色节点表示图中在线查询   筛选数据

时访问的节点; 图 2(b)则是相应的空间划分结果, 其中蓝色圆形散点表示数据记录, 绿色实线框表示查询负载, 紫
色线段表示空间划分, 绿色的虚线框表示在线查询  , 浅蓝色阴影覆盖扫描的数据. 其中, 浅蓝色阴影范围小于单
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元范围, 这是由于 LA-tree最后一层叶子节点将单元内数据子集根据累积分布函数 (cumulative distribution function,
CDF)进行排序, 以进一步提高筛选效果.

X ⩽ 17

T1和T2 q

X ∈ [7,10]∧Y ∈ [45,82]

以图 2(a)中紫色框内的 4个节点构成的子树为例展开分析. 首先, 根节点选择了维度 X, 并据此将数据均匀划

分为 3份, 得到分位点 17和 37. 随后, 根节点的第 1个子节点在其对应   的数据子集上选择 Y维度将其对应

的数据集均匀划分为 3份, 得到分位点 30和 61. 需要指出的是, 根节点的其他子节点可以选择不同的维度进行数

据划分. 按照上述方式, 数据划分过程自顶向下递归进行, 直至达到叶子节点. 每个叶子节点对应一个单元 (cell),
存储一个数据记录的集合, 如图 2(b)中数据子集   所示. 基于上述 LA-tree结构, 在给定在线查询   时, 索引

先自顶向下逐层筛选与查询范围   有交集的节点 (图 2(a) 中标为浅蓝色); 随后扫描所有标

蓝叶子节点对应的单元得到局部查询结果; 最后将这些局部结果合并, 返回最终的查询答案.

Y ∈ [30,40] Y ∈ [0,30]

LA-tree各节点维度是查询感知选择的, 以降低查询负载扫描的数据量. 以图 2(a)紫框内的划分为例, 考虑图 2(b)
紫框内的查询, 可见查询基本聚成维度 Y查询范围在 60以上和 40以下两簇, 因此首先按维度 Y均匀划分数据. 接
下来, 上方的查询维度 X 选择度普遍很低, 因此这部分数据按维度 X 均匀划分. 而下方的查询中, 与数据范围

 部分有交集的查询维度 X选择度较高, 因此这部分数据按维度 Y均匀划分, 而   部分数据则按

维度 X均匀划分.
尽管都采取了自顶向下的空间划分思路, LA-tree与现有树形多维索引 (如 KD-tree[1]和 Qd-tree[3])仍存在显著

区别. 与 KD-tree相比, LA-tree在保证数据均匀划分的同时, 通过结合查询负载选择划分维度, 引入了查询感知能力,
从而提高了筛选效果. 如图 2(b) 所示, 查询负载中大部分查询都能被单个或少数个单元覆盖, 且每个单元里在查询

负载范围以外的数据点很少, 令在线查询扫描比较低, 查询用时短. 而按照图 1(a)中 KD-tree的划分方式, 每个查询

将扫描较多的单元以及数据. 与 Qd-tree在高频查询边界处直接切分数据不同, 在每个中间节点, LA-tree在结合查询

负载选择合适的划分维度后, 按照该维度的数据分布将数据均匀地划分为多个子集, 从而保持全局上的数据平衡.

 2.2   LA-tree 的离线索引构建

离线索引构建阶段, LA-tree采取自顶向下的框架递归划分数据. 具体而言, 在每个中间节点, LA-tree首先依

据查询负载选择合适的划分维度, 以保证“查询感知”; 随后在该维度上依据数据分布将数据均匀地划分为多个子

集, 以保证“均匀划分”.
Q形式化地, 本文将该过程建模为一个优化问题: 在给定查询负载   的情况下, LA-tree需要在每个中间节点选

择合适的划分维度, 从而最小化负载中所有查询在索引上的扫描比之和. 例如, 图 2中紫色框内的节点划分及对应

的数据子集划分显示: 当 4个中间节点选择了合适的划分维度时, 查询负载 (绿色矩形框)中的大多数查询仅与少

量单元相交, 因此查询范围外的数据几乎无需扫描, 查询负载整体的扫描比较低.
解决上述优化问题颇具挑战: 一方面, 即便仅考虑单个节点, 在查询尚未执行之前, 难以直接获知该节点在不

同划分方案下对应的扫描比; 另一方面, 每个节点都可从多个候选维度中自由选择, 使得潜在的数据划分方式呈指

数级增长, 从而显著加剧了问题的复杂性.
针对上述挑战, 本文提出多层次查询感知的数据划分方法. 首先, 针对单节点维度选择中扫描比难以直接获知

的挑战, 构造一个基于扫描比上界的评分函数. 其基本想法是, 在不实际执行查询的前提下, 依据查询负载在候选

维度划分后需扫描的子节点所覆盖的数据量, 对各维度进行估计, 从而高效确定单节点的划分维度. 其次, 面向多

节点联合划分维度选择, 将问题归约为集合覆盖问题. 由于该问题属于 NP难问题, 因此提出分段式多级搜索贪心

算法: 按深度将树划分为若干段 (每段含多层节点), 段内对多节点维度组合进行有限枚举面向评分函数优化, 段间

则采取贪心策略, 最终生成整棵树的数据划分. 该方法兼顾了筛选效果优化的同时, 实现高效的离线索引构建. 有
关多层次查询感知的数据划分的详细介绍请参见第 3节.

 2.3   LA-tree 的在线查询处理

在线查询阶段, LA-tree利用学习模型加速自顶向下的筛选数据. 具体而言, 在中间节点, 预先基于该数据子集

在划分维度上的累积分布函数 (CDF) 训练情况模型, 并利用该模型根据查询范围的边界快速确定需访问的子节

点. 在叶子节点上, 同样对数据排序并训练模型学习其分布, 使索引能够在筛选的最后一步精确缩小候选扫描集的
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范围. 通过这种方式, LA-tree在保持筛选精度的同时, 避免了传统方法中低效的频繁数值比较, 将数据筛选转化为

学习模型“输入查询边界、输出数据位置”的快速计算问题.

q X ∈ [7,10] X ⩽ 17

T7

例如, 图 2(a)中根节点的模型能够根据查询   的范围   定位到第 1个子节点  , 其他中间节点以

此类推. 而左起第 7个叶子节点的模型则可根据查询范围边界缩小候选扫描集, 对应图 2(b)的   区域里浅蓝色阴

影覆盖的区域, 从而避免扫描大量查询范围之外的数据.
然而, 上述方法面临两个挑战: 一方面, 学习模型本身具有预测误差, 而索引必须保证结果的完整性, 即模型筛

选不能遗漏任何满足条件的数据. 另一方面, 常见模型推理耗时较长, 若直接使用反而降低索引性能.
针对上述挑战, 本文提出基于学习模型的高效在线筛选方法. 首先, 为了确保索引筛选结果的完整性, 提出了

误差界限约束, 利用保序模型的性质在学习数据分布时计算边界, 保证查询都不遗漏正确结果. 进一步地, 本文设

计了中间节点的线性回归模型 (linear model, LM)与叶子节点分段线性回归模型 (piece-wise linear model, PLM)相
结合的学习型空间划分多叉树结构, 使每个节点都能够在保证正确性的同时快速完成筛选. 有关该方法的技术细

节, 详见第 4节.

 2.4   LA-tree 的索引更新

X = 10,Y = 70 T7

X ⩽ 17,Y > 61

在动态场景下, 面对数据与查询负载的变化, LA-tree能够相应地更新索引结构, 从而保持索引的准确性和高

效性, 而无需整体重建. 具体包括两个方面: (1)增量更新, 将新数据实时插入到叶子单元中排序后的正确位置, 实
现高效维护; (2)自适应更新, 当检测到局部的数据划分出现不均匀或不再适应查询负载的情况时, 执行局部数据

重划分. 例如, 图 2(a)中的 LA-tree, 利用增量进行更新, 一条更新数据   会被准确地插入数据子集  .
利用自适应更新, 假设有大量   范围内的数据更新使局部数据维度 X和维度 Y的相关性明显提高, 或
涉及该数据范围的大量新查询的谓词仅包含维度 X, 这棵子树都将以新数据子集与查询负载子集重构.

针对这两点, 本文提出自适应增量式的索引更新方法. 将更新的数据视作点查询, 自顶向下利用节点模型准确

定位数据位置. 同时, 将数据分布变化和查询负载变化对子树数据划分的影响统一到扫描量即扫描比, 实时比较新

查询在更新后数据上的扫描比和访问节点的评分函数值, 找到扫描比大幅增加的节点, 重构相应子树. 有关该方法

的技术细节请参见第 5节.

 3   离线索引构建: 多层次查询感知的数据划分方法

本文将查询负载感知的数据划分过程建模为一个优化问题: 在每个中间节点选择合适的划分维度, 以最小化

负载中所有查询的扫描比之和. 为解决这一优化问题, 第 3.1、3.2节将分别探讨两个关键挑战, 即如何在不实际执

行查询的情况下估计单节点的扫描比, 以及如何在多层节点上高效选择划分维度.

 3.1   单节点划分维度选择

Q T单节点划分维度选择的目标是最小化   中所有查询在数据表   上扫描比之和. 根据公式 (3) 定义, 扫描比的

分母总是确定的, 最小化扫描比之和等价于最小化扫描量, 即根据公式 (4), 优化目标为: 

min
aNk ∈A

∑
q∈QNk

∣∣∣∣I′TNk
(q)

∣∣∣∣ (6)

OPRT,Q(a)

由于索引离线构建阶段不执行查询, 节点不同划分维度带来的扫描比变化无法直接衡量. 考虑中间节点结果

公式 (5), 我们提出优化比  , 通过数据总量与按某维度划分查询负载所有查询需访问的子节点覆盖数据

量之和的比, 估计扫描比之和的上界, 如下: 

min
a∈A

OPRT,Q(a) =min
a∈A

1
|T | |Q|

∑
1⩽c⩽b

|Tc|
∑
q∈Q

S (q,T a
c ) (7)

S (q,T a
c ) a q Tc

OPRS T,Q,Nk (a) Nk

OPRT,Q(a) OPRS T,Q,Nk (a)

其中,   是一个 0-1 取值的函数, 表示经过节点维度   的划分, 查询   在数据子集   关于维度 a的值域上有

无交集. 进一步地, 在 LA-tree自顶向下构造树的过程中定义评分函数  : 以 1:1的权重混合节点   的

所有祖先节点中维度为 a的数量占比以及公式 (7)中的  . 我们的目标是选取使   最小化的维
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度 a. 因此, 评分函数兼顾节点维度多样性, 有利于在线查询时的泛化性能.
Q

T Q T aNk

aNk

● 证明优化公式 (7)是优化公式 (6)的上界. 先提出 Q-T分布这一中间概念, 描述一个查询集合   对一个数据

集合   不同区域数据的选择度, 也称   在   不同区域的热度. 通过比较单个节点维度   的不同选择对其子节点

Q-T分布的影响, 定量推导出节点维度   选择对扫描量的影响.
QNk TNk TNk

QNk

aNk

T Q H(Q,T ) T

m a

如图 3,   在   上的 Q-T分布形如一个多维直方图, 每个格子代表   值域上的一个小区域, 其中的数值代

表   中查询范围与此区域有交集的查询数量占比, 可以理解为热度, 越高的区域越红. 在这个单独的 Q-T分布和

节点维度选择的例子中,   选择 X比 Y好, 结合公式 (6)理解, 较高的子节点 Q-T分布热力值总和具有两个有利

于全局估计扫描比降低的良好性质. 首先, 任何查询的索引扫描比都不小于 1, 越高的子节点 Q-T热力和意味着越

多不在查询结果中的数据条目已经被筛选到其他子树中, 被排除候选扫描集, 因此查询负载扫描比之和的上限越

低. 不失一般性地, 我们记考虑的数据表子集查询负载子集分别为   和  , 记 Q-T分布为   且都把   划分为

 个区域, 记节点维度选择为  , 优化目标: 

min
a∈A

∑
1⩽c⩽b

∑
1⩽p⩽m

∣∣∣Tc,p

∣∣∣ (1−H(Qc,Tc)p) (8)

Q将公式 (8)中每条查询从   中展开得到: 

min
a∈A

∑
1⩽c⩽b

∑
1⩽p⩽m

∑
q∈Qc

∣∣∣Tc,p

∣∣∣ (1−H({q} ,Tc)p) (9)

  

3≤X≤7；

5≤X≤12 AND 4≤Y≤10;

6≤Y≤14;

7≤X≤8

按维度X划分
(aNk=X) X

[1,5) [5,9) [9,14)

Y

X

Y

X

Y

X
[1,2] [3,4]

[11,12]

[13,14]

0.5

0.5

1.0

1.0

0.75 1.00

1.000.75

[5,6] [7,8]

[7,8]

[9,10]

[2,4]

[5,6]

[9,11] [12,13]

0.50.5

1.0 1.0

Y

X

[2,3]

[4,5]

0 0

0.333 0.333

[10,11] [12,13]
Y

X
[6,7] [8,9]

1.00

1.00

[6,7]

[8,9]

0.75

0.75

Y

X

[10,2]

[13,14] 0.50

0.50 0.75

0.75

[4,5][1,3]

[2,6) [6,10) [10,15)

按维度Y划分
(aNk=Y)Y

id

X

Y

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

14 13 12 11 10 9 8 7 6 5 4 3 2

Y

X

[2,3]

[4,5]

[6,7]

[8,9]

[10,11]

[12,13]

[14,14]

[1,2] [3,4] [5,6] [7,8] [9,10] [11,12] [13,13]

0

0

0.25 0.25 0.50 0 0 0

00.250.250.750.500.25

0.25

0.25

0.25

0.25

0.25

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.75

0.75

0.75

1.00

1.00

1.00

0.75

0.75

0.50

0.50

0.50

0.50

0.50

0.50

0.25

0.25

0.25

0.25 0.25

0.25

0.25

0.25

0.25

查询负载QNk 数据表子集TNk

q1: SELECT* FROM T WHERE

q2: SELECT* FROM T WHERE

q3: SELECT* FROM T WHERE

q4: SELECT* FROM T WHERE

节点Nk上的Q-T分布

图 3　Q-T分布及 LA-tree节点选用不同划分维度对 Q-T分布的影响
 

S (q,T )

q T q T a

mina∈A

∑
1⩽c⩽b

|Tc|
∑
q∈Q

S (q,T a
c ) OPRS T,Q,Nk (a)

q [lbq,a,ubq,a] b

随 m增大, Q-T 分布精度提升, 直至每个格子精确到仅单个数据条目. 此时我们记   为一个 0-1 取值的

函数, 表示经过节点维度划分, 查询   是否需要进一步筛选数据表子集   (  是否与   值域相交), 公式 (9)化简为

, 标准化即推得公式 (7)的节点维度选择优化比, 进一步可得评分函数  , 该指

标的计算仅需判断查询负载子集中每个查询   的不同单维约束范围   与   个数据分位点之间的大小关

系, 无需执行查询, 也无需计算 Q-T分布.
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 3.2   多层节点划分维度选择

OPRS T,Q,Nk (a)

LA-tree具有多层的空间划分多叉树结构, 因此单节点划分维度选择仅能解决 LA-tree查询感知数据划分的一

个子问题. 现在分析以评分函数   为目标的全树节点划分维度选择问题.
h+1

b Nk

b0|A|1 h−1 bh−2|A|h−1

N1 aN1 ∈ A bh−1|A|h

b = 2 Q

● 全树节点划分维度选择是 NP 难问题. 为方便讨论, 不妨将 LA-tree 看作一棵满多叉树, 且树高为   (含
叶子节点), 分叉数为  . 首先, 讨论   为最底层中间节点的情况, 这是一个典型的单节点扫描比优化问题, 故需要

枚举索引可能的维度组合共计   种. 现在, 假设已枚举完成   层子树, 即枚举了   种维度组合, 则最

上面一层的根节点   枚举其划分维度  . 带来整个问题共计枚举   种维度组合. 至此发现多层次节点

划分维度选择是 NP难问题, 可归约其简化问题 (令  , 是否存在一棵 LA-tree, 使   在其上总扫描比为 1)至精

确覆盖问题加以证明, 参考 Hyafil等人 [9]研究最小决策树的思路.

Nk TNk aNk b

TNk ,c =

{
tl |

c−1
b
<CDF(T aNk

Nk
= vtl ,aNk

) ⩽
c
b
, tl ∈ TNk

}
,c ∈ {1,2, . . . ,b}

∣∣∣TNk

∣∣∣
b

结合公式 (5), 注意到任意节点    上, 数据子集    被不同节点维度    等分为    份, 产生的数据表子集

 有很大差异. 随节点深度增加, 数据子集大小 

关于   指数级下降, 因而浅层节点维度的选择对整棵 LA-tree优化效果的影响比深处节点更大, 这意味着对于每个

节点, 其维度选择导致产生不同子问题本身的优化, 比子问题的优化更加重要. 因此, 可将全局优化自顶向下地拆

解为局部优化.

OPRS T,Q,Nk (a) w h

w w

● 多级搜索贪心算法. 将优化分数   的计算推广到多层节点, 并设置一个参数级数  , 将高度为 

的树构造问题按每级高度为   分段. 段内搜索: 即每高度   的子树, 枚举其中每个节点维度, 以从该子树最后一层

节点自下而上计算的优化比为目标. 段间贪心: 不同段的子树忽略后效性, 在上层段所有节点确定划分维度后, 独

立地搜索下层段各节点划分维度.

分析该算法, 贪心算法本身就可以得到相当优的解, 因为查询负载感知选择维度优化划分数据的过程类似剪

枝, 越浅层节点, 对应越大的数据子集, 对其优化越能提高索引筛选效果. 而多级搜索则进一步考虑了后效性的影

响, 令全树节点维度选择更接近最优解. LA-tree离线索引构建见算法 1.

TNk QNk ht0 ht算法 1. LA-tree离线索引构建: latree-offline( ,     ,  ).

TNk QNk ht0 ht输入: 数据表子集  , 查询负载训练集子集  , 本级枚举起始高度  , 当前高度  ;
Nk输出: LA-tree已构建节点  .

ht = h1. if   then //叶子节点直接决定节点维度构建

aNk QNk sel T a
Nk

2. 　Choose   where   has smallest   on 

Nk ← TNk
3.　   Leaf node on 

w OPRS TNk ,QNk ,Nk (aNk )4. else //中间节点   步枚举节点维度, 以最小化   为目标

ht0 ⩽ ht5.　 if   then //节点尚未确定, 处于维度选择过程中

ht = ht0+w−1 Nk w6.　　 if   then //   是本级   层枚举的最后一层

aNk OPRS TNk ,QNk ,Nk (aNk )7.　　　 Choose   with smallest 

w aNk OPRS TNk ,QNk ,Nk (aNk )8.　　 else //本级   层枚举的中间层, 每个   都选择最优子问题以最小化 

9. 　　　 for c from 1 to b do
aNk OPRS TNk ,QNk ,Nk (aNk ) TNk ,c QNk ,c ht0 ht+110.　　　　Choose   with smallest   by latree-offline( ,     ,  )

11.　　　end for
12.　   end if

TNk QNk aNk
13.　   Try partition   and divide   by 

Nk ← T aNk
Nk

14. 　  Try   Middle node on 

ht = ht015.　   if   then //本级枚举完成, 枚举的根节点确定当前构建的子树
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Nk16. 　　　Determine to build   rooted subtree
17. 　　　for c from 1 to b do

NCNk ,c
← TNk ,c QNk ,c ht0+w ht+1 w18.　　　　   latree-offline( ,     ,  ) //开始下一级   层枚举

19.　　　 end for
20.　　 end if

ht0+w21.　 else //节点已经确定, 只需向下穿过已建节点直到   层开始下一级枚举

22.　　for c from 1 to b do

NCNk ,c
← TNk ,c QNk ,c ht0 ht+123.　　　   latree-offline( ,     ,  )

24.　　end for
25.　 end if

Nk26. return 

Q sel

|T | sel

|Q| sel O
(
hw |T | lg |T |+(

hwbw

w
lg |T |+hwb |T | sel

)
|Q|) w

O(hw |T | lg |T |+hwb |Q| sel |T |) O
(
hw |T | lg |T |+ hwbw

w
|Q| lg |T |

)
OPRS T,Q,Nk (a)

w ⩽ 2

● 复杂度分析. 记整个查询负载训练集   的平均选择度为  , 由于优化分数估计了扫描比的上界, 在每段搜

索过程, 本段子树的叶子节点访问量可以近似为  , 相应地, 本段子树平均每个叶子节点被查询访问次数可以

近似为   , 同理可近似计算每层每个节点近似访问次数, 在此基础上求得算法时间复杂度为  

. 较小和较大的   分别接近算法涵盖的两种特殊情形: 完全贪心算法和全树枚举算法,

分别对应复杂度   和  . 由于优化分数   能很好

地表征扫描比变化, 且剪枝作用明显,   即可算得较优的划分维度组合.

h b T
bh−1
b−1

h b

h b

h b h h

b T Q

● LA-tree超参数   和   分析. 可近似看作, LA-tree索引将数据表   划分为小于   个单元, 因而调节   和 

本质是平衡筛选和扫描阶段的用时, 显然   比   影响更大. 因此调节超参数的算法是, 首先由用户输入索引大小,
进一步计算初始相等的   和  , 再使用邻近搜索方法调节到最佳的  , 最后在确定的   下使用邻近搜索方法调节到

最佳的  . 邻近搜索的每一步, 在   和   的随机样本上构建索引并验证查询用时, 由于样本足够小, 超参数可被快

速调节.

 4   在线查询处理: 基于学习模型的高效在线筛选方法

本文提出的基于学习模型的高效在线筛选方法, 通过在各节点训练线性回归模型拟合数据分布, 使索引能够

在每个节点以常数时间复杂度, 根据查询范围边界快速完成数据筛选, 从而同时保证筛选的准确性与高效性.

T n X

{i1, i2, . . . , in} T X CDF(T X) T X

CDF(T X = x0) =
| {v ⩽ x0|v ∈ T X} |

n

● 准确性证明. 不失一般性地, 以单维索引问题展开分析. 给定数据表   有   行且仅单维属性  , 将其升序排

序并记对应顺序条目号为  , 引入离散数据累积分布函数 (CDF)刻画   的分布  , 表明任意 

取值的相对位置, 即  .

MT X (x) CDF(T X)

ebMT X

设一线性回归模型 (LM)   拟合   , 在离线训练阶段仅根据数据分布求出其误差界限 (error-
bound), 记为  : 

ebMT X =max
{∣∣∣MT X (v)−CDF(T X = v)

∣∣∣ | v ∈ T X
}

(10)

[lb,ub] MMT X (x)

ebMT X MT X (x)

基于公式 (10), 可以证明对于任意在线查询  , 所有查询范围内的数据条目一定在   估计的两端

位置各向外扩张一个   的范围内. 即基于   的学习型索引可以表示为: 

IT ([lb,ub]) =
{

il, il+1, . . . , ir | MT X (lb)− ebMT X ⩽
l
n
⩽

r
n
⩽ MT X (ub)+ ebMT X ,vil−1 ,X < lb ⩽ vil ,X ⩽ vir ,X ⩽ ub < vir+1 ,X

}
(11)

IT MT X (x)

∀v ∈ T X [lb,ub] lb ⩽ v

用不等式放缩法可证明公式 (11) 成立, 即该学习型索引    的正确性. 由于    是单调递增函数, 对于

, 若在线查询   满足  , 必有: 
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MT X (lb)− ebMT X ⩽ MT X (v)− ebMT X ⩽CDF(T X = v) (12)

∀v ∈ T X [lb,ub] ub ⩾ v同理, 对于  , 若在线查询   满足  , 必有: 

CDF(T X = v) ⩽ MT X (v)+ ebMT X ⩽ MT X (ub)+ ebMT X (13)

ebMT X

IT

证毕. 公式 (12)和公式 (13)证明了公式 (11)将学习模型估计的两端位置按训练阶段确定的误差界限   向

外扩张, 索引不会遗漏任何查询范围内的数据. 即对于任何保序的学习模型, 学习型索引   都能在误差界限范围

内保证准确性.

O(n)

O(1) O(logn)

O(1)

● 高效性分析. 图 4(a)以基于 LM的学习型单维索引为背景, 展示了线性回归模型拟合数据分布并根据约束

范围检索数据的基本原理. 离线训练过程中, 仅需   的时间快速训练 LM 即完成索引的离线构建. 在线回答过

程中,   时间确定范围比传统方法   明显更加高效. 本例中, 传统方法需两次二分或平衡树查找分别确定

该查询内数据条目的范围, 共计约 6–8次数值比较操作. 而此学习型索引训练得到的 LM满足 error-bound仅 0.12,
在回答该查询时, 仅需约 2–3次数值比较操作, 大幅度降低了在线查询用时. 随数据量增大, 二分所需数值比较次

数呈对数级增长, 而 LM的误差通常仍维持在常数范围内, 即数值比较次数几乎不变. 进一步地, 对于数据量较大

且分布倾斜的情形, LM误差将增大. 对此, 可使用分段式线性回归模型 (PLM)拟合 CDF, 模型输入输出与 LM一

致, 将误差控制在常量范围内. PLM的正确性支撑类似函数微分原理, 在局部线性化近似函数曲线. 在 PLM中, 排
序后的数据将被分为若干连续的小区间, 由一个总体 LM定位区间, 而每个小区间内再由一个 LM拟合局部 CDF,
且保证任意小区间内 LM的 error-bound不超过设定的限制, 时间复杂度为  .
 
 

数据表T

id

X

1 2 3 4 5 6 7 8 9 10

1917151413127421

扫描筛选出的数据条目

范围约束 6≤X≤16;

(a) 线性回归模型拟合累积分布函数

离线
训练

LM模型

WHERE 7≤X≤10

AND 45≤Y≤82;

30 61

17 37

X Y

YYYXXXYY

6 11 33 38 12 15

YX

(b) LA-tree基于学习模型的高效在线筛选方法

q: SELECT* FROM T

CDF(Y)

CDF(X)

CDF(X)
0.37−0.12≤CDF(X)≤0.87+0.12

CDF(X)

转化为CDF(X)

图 4　线性回归模型拟合数据积累分布函数
 

● 基于学习模型的高效在线筛选方法. 如图 4(b), 总体上, 该方法首先在 LA-tree树形索引结构中自顶向下地

筛选出数据范围与查询范围有交集的所有节点, 直到叶子节点确定需要进一步筛选和扫描的所有单元, 通过扫描

得出查询结果子集. 最后, 该方法自底向上地合并各子树上的查询结果子集, 得到完整的查询结果.
Nk Nk b

CDF(T aNk
Nk

) q aNk [lbq,aNk
,ubq,aNk

]

TNk aNk T aNk
Nk

ebM
T

aNk
Nk

[lbq,aNk
,ubq,aNk

]

TNk aNk

Nk

Nk Nk

对于每个具体的节点  , 若   是一中间节点, 由于分叉数   通常较小, 因而中间节点对 error-bound 不敏感.
自顶向下筛选时, 通过拟合   的 LM模型, 对查询   的谓词在节点维度   上的范围  , 用模型

估算其两端点在数据子集   关于   的投影   中的有序位置, 再将估算结果向两端分别扩张   的宽度以

保证数据筛选没有遗漏. 这样, 可以得到   包含的节点内的分位点, 对应了与查询范围相交的、数据子

集   按维度   进一步划分的所有子集. 计算完成后, 即可获得明确的需要访问以进一步细化筛选的所有子节点.
当筛选与扫描结束, 自底向上合并查询结果时, 再在节点   上求这些被访问的子节点返回的查询结果子集的并

集, 作为节点   返回的查询结果子集. 结合公式 (2)和公式 (11), 经上述流程, 节点   的查询结果子集为: 

ITNk
(q) =

∪
M

T
aNk
Nk

(lbq0 ,aNk
)−ebM

T
aNk
Nk

⩽ c
b ⩽M

T
aNk
Nk

(ubq0 ,aNk
)+ebM

T
aNk
Nk

ITNCNk ,c
(q) (14)
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Nk h b

aNk

CDF(T aNk
Nk

) q aNk

[lbq,aNk
,ubq,aNk

] TNk aNk T aNk
Nk

ebM
T

aNk
Nk

[lbq,aNk
,ubq,aNk

]

Nk

若   是一个叶子节点, 由于在一定的   和   设置下, 一个叶子节点可能包含较多数据条目, 使用 LM 模型筛

选数据可能带来较高的 error-bound, 因而叶子节点使用 PLM 模型拟合按节点维度   排序后的数据子集的分布

. 自顶向下筛选时, 叶子节点是最后一层, 通过该 PLM 模型, 对查询   的谓词在节点维度   上的范围

, 用模型估算其两端点在数据子集   关于维度   的投影   中的有序位置, 再将估算结果向两端

分别扩张   的宽度保证数据筛选没有遗漏. 注意, 叶子节点 PLM 模型估算位置的过程与中间节点 LM 模型

稍有不同, 具体来说先定位输入值所在分段 (piece), 再用段上的局部 LM 模型估算位置. 计算完成后, 即可得到

 包含的所有数据条目, 进一步扫描以确定每条数据是否在查询范围内. 当筛选与扫描完成, 自底向上

合并查询结果时, 叶子节点   直接返回经过“筛选+扫描”确定的查询结果子集. 结合公式 (1)和公式 (11)有: 

ITNk
(q) =

{
i | lbq,a j ⩽ vt′i ,a j ⩽ ubq,a j ,∀a j ∈ A, t′i

{
MT

aNk
Nk

(lbq,aNk
)− ebM

T
aNk
Nk

⩽
l
n
⩽

r
n
⩽ MT

aNk
Nk

(ubq,aNk
)+ ebM

T
aNk
Nk

}}
(15)

IT (q) = ITN1
(q)

O(1) b−1

最终, 查询结果由根节点返回即  . 上述高效在线筛选方法, 在 LA-tree每个节点上, 都能利用机器

学习模型以   的开销快速准确筛选子节点和数据, 令查询扫描比进一步降低的同时无需与中间节点的   个

分位点以及叶子节点的排序数据做数值比较, 效率很高. 算法 2描述了上述包含公式 (14)和公式 (15)的基于学习

模型的高效在线筛选方法.

Nk q算法 2. LA-tree在线查询处理: latree-online( ,  ).

Nk q输入: LA-tree节点  , 在线查询  ;

ITNk
(q)输出: 节点索引功能返回的数据条目号集合  .

CNk = ∅1. if   then //叶子节点筛选与扫描

ITNk
(q)← TNk q0 aNk

2.　   Scan data tuples   after filtering by   with PLM on dimension 
3. else //中间节点筛选

ITNk
(q)← ∅4.　 

f child, tchild←
[
lbq,aNk

,ubq,aNk

]
aNk ±eb5. 　   Filter child nodes by   with LM on dimension  , refine by 

c f child tchild6.　 for   from   to   do
ITNk

(q)← ITNk
(q) ∪ NCNk ,c

q7. 　　   latree-online( ,  )
8.　 end for
9. end if

ITNk
(q)10. return 

N1 q q T上述算法 2入口为 latree-online( ,  ), 函数执行完毕后将返回查询   在数据   上的结果.

 5   在线索引更新: 自适应增量式的索引更新方法

O(1) t′ =
⟨
vt′ ,a1 ,vt′ ,a2 , . . . ,vt′ ,ad

⟩
q : [vt′ ,a1 ,vt′ ,a1 ]∧ [vt′ ,a2 ,vt′ ,a2 ]∧ . . .∧ [vt′ ,ad ,vt′ ,ad ]

O(h)

LA-tree的在线索引更新由两部分组成: 增量更新与自适应更新. 增量更新保证新数据能够被实时插入并维护

局部有序性, 自适应更新则通过动态调整局部数据划分以适应数据分布和查询负载的变化, 两者共同确保索引在

动态环境下依然保持“均匀划分”与“查询感知”的特性. 增量更新: 该方法应对动态场景中的数据更新操作, 分为两

步骤: 先定位增删改的数据条目在索引中储存的位置, 再对该位置删除或插入新元素. 这里第 2步较为简单, 使用标

记法即可在   的时间内解决. 对于第 1步, 我们将数据条目转化为点查询, 即对新数据条目 

转化为对应查询  , 该查询基数恒为 1, 显然通过自顶向下的节点模型高效

映射, 仅需   时间即可完成新数据条目的定位, 该过程如算法 3所示.

Nk t算法 3. LA-tree增量数据索引更新: latree-incremental-data-update( ,  ).

Nk t输入: LA-tree节点  , 更新数据条目  ;
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CNk = ∅1. if   then
t t aNk

2. 　Insert/delete/update data tuple   after locating   with PLM on dimension 
3. else

c← taNk aNk ±eb4.　   Choose the child node by   with LM on dimension  , refine by 

NCNk ,c
t5. 　latree-incremental-data-update( ,  )

6. end if
7. return

● 数据更新对索引影响. 在 LA-tree对数据的划分不发生改变之前, 上述增量更新过程不会影响任何节点上机

器学习模型的 error-bound. 由公式 (12)和公式 (13)可以保证, 新数据总会被更新到各节点正确的分位点之间, 即
最终更新到正确的单元. 这种情况下, 任何范围包含新数据的查询, 不会发生结果遗漏. 然而, 随着数据更新的累

积, 数据分布的变化将使得部分区域数据量明显超过平均水平, 即 LA-tree “均匀划分”的特性不再保持. 这会导致

范围与该区域有交集的查询扫描量升高, 查询用时变长.
● 查询负载变化对索引影响. 随查询负载的变化, 查询范围分布将发生变化, 部分节点的维度和分位点可能被

查询范围完全包含, 从而失去筛选数据的效果. 这同样会导致查询扫描量升高, 查询用时变长.
综上, 更新的关键影响在于检查查询扫描量的变化. 随着数据更新与查询负载变化的累积, 原有 LA-tree索引

的划分模式可能不再适应于当前的数据分布和查询负载, 导致在线查询扫描比上升, 查询耗时增加, 因而需要对

LA-tree的划分模式重新调整.
● 自适应更新. 利用动态扫描量自适应判断 LA-tree索引的哪些节点需要重构以调整数据划分, 该方法既不按

照数据分布的变化判断, 也不按照查询负载的变化判断, 而是当局部索引的性能真正受到两者共同变化的影响, 体
现在节点的评分函数受新查询较高的扫描比影响, 增大幅度超过阈值, 即性能明显劣化, 判断以该节点为根的子树

需要重构以重新拟合新的数据分布与查询负载. 如图 5, 若干新查询执行过程中, 参与筛选的节点在自底向上结果

合并时, 以子节点返回的查询扫描比快速更新节点评分函数. 在这一过程中, 如检测到评分函数大幅增大, 如图 5
中红框内的节点, 则标记该相应子树需重构, 并在本次查询结束后执行.
  

新查询
···

WHERE 3≤X≤35

AND 70≤Y≤75

X

Y X Y

YXYX

Y Y X X X Y X Y Y Y Y Y

877515123833116

30 61

17 37

子树重构OPRS=0.2

OPRS=0.10OPRS=0.35

OPRS=0.23

q': SELECT* FROM T

OPRS'=0.26

OPRS'=0.32 OPRS'=0.12

OPRS'=0.3

图 5　LA-tree自适应更新子树重构
 

算法 4展示了自适应重构的框架, 检查出满足上述条件的节点, 并对相应子树调用离线构建算法 2重构子树.
如此, 所有需要重构的子树全部重新优化了性能, 此外没有任何多余的调整操作.

N1 q算法 4. LA-tree自适应索引子树重构: latree-adaptive-reconstruction( ,  ).

N1 q输入: LA-tree根节点  , 在线查询  ;
N′1输出: 更新后的 LA-tree索引根节点  .

N′← N1 q1.   latree-adaptive-check( ,  ) //需更新节点集合
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Q← Q∪{q}2.   //更新查询负载训练集

N′c N′3. for   in   do

ht′0← N′c4.　   Height of 

N′c← TN′c QN′c ht′0 ht′05.　   latree-offline( ,     ,  )

6. end for

N′17. return 

O(1)

τ

算法 5是自适应子树重构触发. 这是算法 4高效的关键, 触发方法随在线查询算法 2同时执行, 实时检查索引

是否需要更新, 并确定需要更新的局部, 在当前查询完毕后执行索引更新, 即自适应索引子树重构算法 4. 我们通

过在节点增加一个数值变量维护实时评分函数变化, 在线查询过程中以   的额外时间开销不断更新, 高效且准

确. 在自底向上合并查询结果子集的过程中, 不断地将查询扫描比与所访问节点评分函数做加权平均, 更新节点的

评分函数. 当一个节点当前评分函数增高超过阈值  , 说明该节点为根的子树不再适应当前的新数据和查询, 将节

点加入重构节点集合. 同时, 考虑到不同层次数据子集之间的包含性, 当上层节点加入重构节点集合后, 将自动从

集合剔除其所有后代节点, 避免重复构造. 由于越上层的节点覆盖的数据范围越大, 查询数量越多, 从而受新数据

和新查询影响越小. 因此, 算法实际通常只触发少量下层节点重构, 更新耗时少.

Nk q τ算法 5. LA-tree自适应子树重构触发: latree-adaptive-check( ,  ,  ).

Nk q0 τ输入: LA-tree节点  , 在线查询  , 阈值  ;
N′ q0 srq0

输出: 需重构节点集合  ,   的真实局部扫描比  .

CNk = ∅1. if   then //叶子节点直接计算扫描比

∅, srq← q TNk aNk
2.　   Leaf node not to reconstruct. Scan ratio of   on   by PLM on dimension 

OPRS TNk ,QNk ,Nk (aNk )3. else //中间节点合并子树扫描比, 更新当前 

fchild, tchild←
[
lbq,aNk

,ubq,aNk

]
aNk ±eb4.　   Filter child nodes by   with LM on dimension  , refine by 

c f child tchild5. 　for   from   to 

N′, srq← NCNk ,c
q06.　　   Union and average of latree-adaptive-check( ,  )

7. 　end for

OPRS ′TNk ,QNk ,Nk
(aNk ) srq8. 　Update   by merging   //中间节点用局部扫描比加权平均更新评分函数值

OPRS ′TNk ,QNk ,Nk
(aNk ) > (1+τ)OPRS TNk ,QNk ,Nk (aNk )9.　 if   rises sharply then //本节点及整棵子树需要重构

N′← {Nk}10.　　 
11.　end if
12. end if

N′, srq13. return 

综上, 算法 3与算法 4、算法 5共同组成了高效的 LA-tree索引自适应增量更新方法.

 6   实　验

 6.1   实验数据集和查询负载

本文在公开且常用的评测数据集 Stock[10]与 TPC-H Lineitem[11]上进行了实验. 为进一步评测多维索引在高维数

据下的性能, 又在较新的基准数据集 DSB Sales[12]上开展实验. 表 1总结了各数据集及其对应查询负载的基本情况.
(1) 数据集 Stock 记录了多支股票在多个日期的价格变化. 其特点是数据记录规模大, 部分维度值域较广, 且

数据维度间相关性较强, 适于考察多维索引在大规模数据上的性能表现.
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(2) 数据集 TPC-H Lineitem是最常见的 OLAP基准测试数据, 包含商品交易的事实记录, 其特点是数据记录

规模较大、维度值域广, 但维度间相关性较弱.
(3) 数据集 DSB Sales 由 Ding等人 [12]设计, 是较新的 OLAP基准测试集合, 包含大量交易记录. 其特点是数据

记录规模较大、维度数量高, 因此本文选用该数据集用于评估多维索引在高维数据下的性能表现.
 
 

表 1　实验所用的数据集与查询负载统计情况
 

数据集 数据表行数 (M) 数据表维度 查询负载 查询维度 查询谓词范围

Stock 20 7
Uniform 1–4 均匀分布, 谓词宽度正态分布

Skew 1–4 向极值倾斜, 谓词宽度指数分布

TPC-H Lineitem 3 8
Uniform 2–5 均匀分布, 谓词宽度正态分布

Skew 2–5 向极值倾斜, 谓词宽度指数分布

DSB Sales 6 34
Uniform 2–5 均匀分布, 谓词宽度正态分布

Skew 2–5 向极值倾斜, 谓词宽度指数分布

HD 7–33 同Uniform
 

由于多维索引主要关注查询谓词对数据表多维属性范围的同时约束, 部分数据表没有附带查询或附带查询不

符合实验场景, 我们用随机模板的方式构造了查询负载. 具体来说, 先随机生成多个模板, 每个模板覆盖数据表的

部分属性维度. 之后在生成查询的过程中, 第 1步随机选择一个模板, 第 2步服从查询负载设置的查询范围分布随

机生成模板包含的每个属性维度上的约束范围, 合起来作为查询谓词. 该方法既符合模板法查询生成的惯例, 又保

证了查询的随机性和多样性. 在此基础上, 我们构造了均匀 (Uniform)和倾斜 (Skew)两种谓词范围分布不同的查

询负载, 其中, Uniform 查询负载谓词的中点位置、范围宽度关于数据值域均匀分布; Skew 查询负载谓词的中点

位置、范围宽度关于数据值域指数分布. 此外, 针对高维数据集 DSB Sales构造了高维 (high-dimensional, HD)查
询负载, 使每条查询谓词约束的属性维度提高 3–15倍, 更加具有挑战性.

 6.2   评价指标、对比方法和实验设计

(1) 实验 1: 静态场景. 多维索引主要应用场景侧重于优化在线查询性能, 而数据更新不频繁, 且现有工作对更

新功能考虑较少. 因此, 我们按照现有工作惯例, 先评测最重要的静态场景中的索引查询性能, 其评测指标如下.
● 在线查询平均用时. 这是首要指标, 即对于测试集每条查询, 计算从调用索引在线查询入口函数到该函数返

回包含所有查询范围内数据的指针的数组的用时, 再求平均用时. 进一步地, 我们分析多维索引查询过程中筛选和

扫描两个阶段的用时, 但在索引内部函数中反复计时会显著干扰索引性能使测试结果失真, 因而我们通过两个常

用且关键的指标间接对比索引在两个阶段分别的用时.
● 在线查询平均扫描比. 计算索引扫描的数据条目数和查询范围内数据条目数的比值, 由于小基数的查询易

使该指标突增 (尽管扫描的数据条目数仍然很少), 故计算执行整个查询负载测试集的扫描比而非每个查询平均扫

描比. 一般来说, 若该指标较小, 索引扫描查询范围外的条目数较少自然扫描阶段开销较小, 筛选效果较好.
● 在线查询平均访问单元数量. 计算索引平均一条查询筛选出需访问的单元数量. 一般来说, 若该指标较小,

说明索引在筛选阶段用时较短, 也即筛选效率较高.
● 索引离线构建用时和索引大小. 作为次要指标, 虽然索引性能以在线查询性能为主要指标, 也应该兼顾合理

的离线构建用时和索引大小.
● 基准方法. 分为传统和学习型两类. 传统方法包括 Clustered、KD-tree和 Octree. 其中, Clustered是单维索引,

仅对查询负载谓词中选择度最低的属性维度建立排序索引, 由一次二分查找直接获得查询结果, 用于模拟数据库系

统中最常用的聚簇索引. KD-tree[1]是经典的多维空间划分二叉树, 常用于高效的多维索引使用. Octree[2]是经典的三

维空间划分八叉树, 一般用作空间索引, 我们参考现有工作 [4,5]对其的拓展, 令每个节点随机任选数据表的 3个维度

做三维空间划分, 使其作为多维索引使用. 学习型方法包括 Qd-tree和 Tsunami. 其中, Qd-tree[3]总是在查询边缘对

数据做划分, 对查询负载训练集强拟合, 考虑到查询较多, 所有查询边缘全部参与划分使得分片过于细碎, 大幅增加

索引占用空间大小同时反而拖累在线查询性能, 我们在每个数据集的每个查询负载上都为 Qd-tree分别调优了划分
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总数限制. Tsunami[5]在学习型网格的基础上对查询负载分布和数据中的二维相关情形做了优化, 由于作者未公开

其用于调优的模型, 无法使用该方法调优索引, 我们按照其论文中说明的另一种迭代方法调优参数, 考虑论文提及

调优模型的训练需在大量不同的数据集反复构建索引, 两种调优方法增加的索引离线构建用时是可比的.
(2) 实验 2: 泛化性能与动态场景. 学习型索引大多使用了查询负载优化索引性能, 因此应评价无查询负载训

练集和查询负载偏移场景的泛化能力. 对于查询负载偏移场景, 索引在每个数据表的 Uniform查询负载上离线构

建索引, 在线查询 Skew负载. 此外, 相比其他多维索引方法, LA-tree以高效的索引自适应增量更新方法拓展了其

更新支持能力, 故我们额外增加 LA-tree索引更新性能纵向评估, 以朴素的定期重新构建 LA-tree索引作为基准更

新方法与 LA-tree索引自适应增量更新方法作纵向比较.
● 读写混合负载. 为增强更新对原索引的影响, 提高实验挑战性, 该负载包含普通查询和新数据插入指令. 其

中包含的普通查询为 TPC-H Lineitem数据集的 Skew查询负载, 而考虑到 TPC-H Lineitem数据集的相关性弱, 我
们新增的 3M 行数据用属性各维度单独排序的方式增强数据相关性. 实验 2 在 TPC-H Lineitem 数据集及对应的

Uniform查询负载训练集上离线构建 LA-tree索引, 然后在线运行我们设计的读写混合负载. 基准更新方法将整个

负载分为 10个区间, 在区间间隔处重新构建 LA-tree索引而在每个区间中将新增数据保存至缓冲区, 与之前构建

好的索引一起处理查询结果. LA-tree索引自适应增量更新则将每条新增数据通过中间节点 LM和叶子节点 PLM
自顶向下地插入到 LA-tree的正确位置, 再对 LA-tree做自适应重构.

● 评测环境. 所有的基准方法及 LA-tree都用 C++ 11实现. 为公平比较, 各方法的入口函数、计时框架、回归

模型 (如 LM) 等部分代码都尽量一致. 评测环境: 系统 Ubuntu 20.04.6 LTS; 处理器 Dual CPU System: 2×Intel(R)
Xeon(R) Gold 6230 CPU@2.10 GHz (20C40T); 运行内存 1 TB DDR4 ECC; 外存磁盘 4×8 TB HDD (RAID5).

 6.3   实验 1: 静态场景索引查询性能评测

h b h = 8, b = 3

h = 7, b = 10 h = 9, b = 5

我们首先按照在线查询平均用时对索引查询性能做总体比较, 然后通过平均访问单元数量和扫描比两个指标

分析造成索引性能瓶颈的问题所在, 最后比较索引的离线构建用时和索引大小. 其中, LA-tree使用第 3节提出的

临近搜索法, 在数据与查询负载 1%采样率的小样本上确定了超参数   和  . 具体地, 在 Stock数据集上  ;
在 TPC-H Lineitem数据集上  ; 在 DSB Sales数据集上  .

如表 2所示, 最优结果用加粗表示. 传统索引整体性能有限, 其中, Clustered作为单维索引, 整体性能最差. 但
其在 Stock数据集上表现相对较好, 这是因为 Stock中“股价”维度的取值重复较少, 使谓词筛选效果较佳, 从而提

升了单维索引性能. KD-tree 与 Octree 作为典型的多维索引, 整体明显优于单维索引. 但二者均缺乏查询感知, 并
在筛选时依赖大量数值比较, 其查询用时仍比学习型索引多 1–2倍. 相对而言, 多维划分的 KD-tree性能优于三维

划分的 Octree, 原因在于前者更简洁的节点功能带来的较低算法开销.
  

表 2　索引在线查询平均每条查询用时比较
 

数据集 查询负载
Clustered
(ms)

KD-tree
(ms)

Octree
(ms)

Qd-tree
(ms)

Tsunami
(ms)

LA-tree
(ms)

比SOTA提升
(%)

比学习型提升
(%)

Stock
Uniform 41 456 468 43 56 31 24 28
Skew 30 419 338 32 79 26 13 19

TPC-H
Lineitem

Uniform 178 23 30 19 31 12 37 37
Skew 182 24 29 17 19 12 29 29

DSB Sales
Uniform 483 313 442 148 1 109 71 52 52
Skew 429 314 445 134 1 559 74 45 45
HD 901 128 251 256 1 017 84 34 67

平均情况 320.6 240.0 286.1 92.7 552.9 44.3 52 52
 

相比之下, 学习型索引在大多数场景下更具优势. Qd-tree 在部分查询负载下平均查询用时较短, 但在 DSB
Sales数据集的高维场景中性能显著下降, 原因在于其非均匀数据划分在高维下劣势凸显. Tsunami的查询用时整

体偏高, 并在 DSB Sales上性能退化更为严重. 这些结果表明, 基于网格结构的学习型索引在拟合高维数据分布时

存在局限.
综合来看, LA-tree在所有测试中均取得最佳结果, 总体性能相比其余现有最优方法提升约 52%. 其优势来自
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优化的树形数据划分与学习模型结合的高效筛选机制, 使其在高维查询场景中表现尤为突出.
实验结论 1. LA-tree 在多维索引方法中表现出最佳的查询性能, 并且在高维场景下优势更加显著. 其原因在

于: 一方面, 优化的树形结构实现了更有效的数据划分; 另一方面, 学习模型显著加速了数据筛选.
结合图 6和图 7可以看出, LA-tree在绝大多数测试中的扫描比和平均访问单元数量均为最小, 说明其在线查

询在筛选和扫描阶段的耗时均接近最低, 与其在平均查询时间上的实验结果相一致. 值得注意的是, 扫描比与平均

访问单元数量存在权衡关系, 而 LA-tree能在保持平均访问单元数量普遍比其他多维索引低 1–2个数量级的前提

下, 依然实现最佳的扫描比, 尤其在高维数据集 DSB Sales上优势更加明显. 结合表 3中展示的各多维索引查询用

时中筛选用时的比重, 可以看出 LA-tree 筛选方法效率相比现有方法大幅度提高, 同时结合其极低扫描比, 说明

LA-tree查询感知的均匀划分同时取得很好的筛选效果.
 
 

表 3　多维索引在线查询筛选用时平均占比 (%)
 

数据集 查询负载 KD-tree Octree Qd-tree Tsunami LA-tree

Stock
Uniform 44.1 39.7 20.9 39.3 3.2
Skew 47.5 44.1 9.4 44.3 3.8

TPC-H Lineitem
Uniform 43.5 40.0 47.4 38.7 16.7
Skew 45.8 41.4 47.1 5.3 16.7

DSB Sales
Uniform 48.9 42.5 49.3 55.2 7.0
Skew 48.7 42.7 50.0 57.6 6.8
HD 42.2 38.2 48.0 55.1 2.4

平均情况 45.8 41.2 38.9 42.2 8.1
 

在学习型方法中, Qd-tree表现相对较好, 但在 DSB Sales数据集的高维查询负载下, 其扫描比较其他查询负载

增加近 3.5 倍, 平均访问单元数量也显著上升. 这是因为高维查询导致查询边界数量激增, 非均匀划分放大了扫描

比的劣势. Tsunami整体优于传统方法, 但在 DSB Sales上平均访问单元数量和扫描比均大幅增加, 与其在该数据

集上较高的查询延迟相一致. 这反映出网格结构在高维数据分布下难以兼顾访问单元数量与扫描比调优的瓶颈,
本质原因在于网格难以拟合高维相关性, 尤其在稀疏分布中问题更加突出.
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图 6　各索引在线查询平均扫描比对比
 

在传统方法中, Clustered作为单维索引不涉及单元划分, 其在 Stock数据集上的扫描比较低, 与其较短的查询

时间相符. 但在其他数据集上, 扫描比显著高于多维索引, 进一步验证了多维索引的有效性. KD-tree 和 Octree 在
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扫描比和访问单元数量上均明显优于 Clustered, 但仍不及学习型方法, 说明学习型多维索引在筛选性能上的优势.
二者中 KD-tree因节点功能更简洁、算法开销更低, 相比 Octree具有更好的查询性能. 需要注意的是, 快速在线查

询依赖于筛选和扫描两个阶段同时具备较低开销, 单一指标的优势不足以显著提升整体性能. 例如, Tsunami 在
Stock数据集的 Skew查询负载下实现了与 LA-tree相当的极低扫描比, 又在 TPC-H Lineitem数据集的 Skew查询

负载下实现了最小的平均访问单元数量, 但由于另一指标表现明显不足, 其在线查询平均用时依然较长. 实验中

Tsunami 按照其论文提出的代价函数搜索超参数, 该函数目标最小化查询负载在筛选和扫描阶段的总耗时. 在
Skew负载上, 受查询范围位置分布较为倾斜, 宽度分布方差较大, 可能出现牺牲扫描比但大幅减少划分格子数量

提高整体在线查询性能的情况. 这里 Tsunami在线查询性能不够好的原因主要在于网格难以拟合多维相关性.
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图 7　各多维索引在线查询平均访问单元数量对比
 

实验结论 2. LA-tree的多层次查询感知的数据划分方法显著优于现有索引方案. 通过在树形结构中同时兼顾

“均匀划分”与“查询感知”, LA-tree 在多维范围查询中展现出更强的筛选能力, 能够有效降低扫描比. 特别是在高

维场景下, 其优势更加凸显.
表 4和表 5展示了索引在离线构建的用时与空间开销, 最优结果用加粗表示. 学习型索引整体上离线构建耗

时较高, 传统多维索引与学习型网格索引 Tsunami在数据量较大的 Stock数据集上空间开销急剧膨胀, 显示出较

差的可扩展性. 除单维索引 Clustered外, 其余多维索引均存在较大的空间占用, 但整体仍处于数据库系统可接受

范围.
  

表 4　索引离线构建用时比较 (s)
 

数据集 查询负载 Clustered KD-tree Octree Qd-tree Tsunami LA-tree

Stock
Uniform 2 33 35 199 236 191
Skew 2 33 35 168 234 184

TPC-H Lineitem
Uniform 0.4 4 4 87 206 47
Skew 0.4 4 4 81 205 48

DSB Sales
Uniform 0.5 7 9 430 546 406
Skew 0.5 7 9 412 545 410
HD 0.5 7 9 296 546 408

 

相比之下, LA-tree在离线构建开销上与其余学习型方法处于同一水平, 且空间占用保持稳定并相对轻量. 这
表明 LA-tree在保证高效查询性能的同时, 能够在离线构建和空间开销两个方面兼顾可扩展性与实用性.
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实验结论 3. LA-tree多层次查询感知的数据划分方法支持高效的离线索引构建. 其在节点层面采用的轻量化

LM与 PLM模型, 不仅保证了索引筛选性能, 同时有效降低了离线构建的时间开销与空间占用.
 
 

表 5　索引占用空间大小比较 (MB)
 

数据集 查询负载 Clustered KD-tree Octree Qd-tree Tsunami LA-tree

Stock
Uniform 240 2 640 3 540 292 938 509
Skew 240 2 640 3 540 164 1 152 524

TPC-H Lineitem
Uniform 34 358 463 332 234 207
Skew 34 358 463 332 80 195

DSB Sales
Uniform 65 631 803 631 471 322
Skew 65 631 803 631 380 321
HD 65 631 803 631 471 206

 

 6.4   实验 2: 索引泛化性能及动态场景索引更新评测

本节从多个角度评估 LA-tree 在动态场景下的索引性能与泛化能力, 涵盖 3 类典型情形: 无查询负载、查询

负载偏移以及索引更新.
如表 6所示, 最优结果用加粗表示. 首先在不使用查询负载的条件下评估 LA-tree的性能, 即禁用其多层次查

询感知的数据划分方法. 需要注意的是, 由于其他学习型索引无法关闭查询感知特性, 因此此处仅将关闭查询感知

优化的 LA-tree与传统索引方法进行对比. 结果表明, LA-tree的基于学习模型的筛选方法依然非常高效, 相比最快

的传统多维索引平均查询用时降低约 62%, 说明在缺乏查询负载时, LA-tree仍能作为高性能的学习型多维索引使

用. 进一步地, 结合实验 1中表 2的结果, 在有查询负载条件下当启用多层次查询感知的数据划分方法后, 完整的 LA-
tree在相同实验条件下还可减少约 52%的查询用时. 这一结果表明, LA-tree在索引构建阶段的“查询感知数据划

分”与在查询阶段的“学习型筛选优化”两方面相辅相成, 共同作用于减少在线查询时间.
 
 

表 6　LA-tree无查询负载训练集情形在线查询平均每条查询用时
 

数据集 查询负载 Clustered (ms) KD-tree (ms) Octree (ms) LA-tree (ms) 提升 (%)

Stock
Uniform 41 456 468 33 20
Skew 30 419 338 30 0

TPC-H Uniform 178 23 30 18 22
Lineitem Skew 182 24 29 18 25

DSB Sales
Uniform 483 313 442 228 27
Skew 429 314 445 221 30
HD 901 128 251 94 27

平均情况 320.6 240.0 286.1 91.7 62
 

实验结论 4. LA-tree的多层次查询感知的数据划分方法与学习型筛选方法均能显著降低在线查询用时. 即使

在缺乏查询负载的情况下, LA-tree依然保持较高的查询效率, 体现出其良好的泛化能力.
查询负载变化令查询范围分布发生变化, 使得利用查询负载训练集优化的学习型索引性能下降. 表 7比较学

习型索引在查询负载变化情形的泛化性能, 最优结果用加粗表示. 不难看出, 对于在 Uniform查询负载上离线构建

索引而在线查询负载为 Skew的查询负载变化场景, LA-tree总是表现出最快的在线查询平均用时, 且总体性能比

学习型基准方法提升了 54%, 高于之前静态场景提升幅度.
 
 

表 7　查询负载变化情形学习型索引泛化性能 (在线查询平均每条用时)比较
 

数据集 Qd-tree (ms) Tsunami (ms) LA-tree (ms) 提升 (%)
Stock 103 48 28 42

TPC-H Lineitem 18 31 13 28
DSB Sales 138 1 017 77 44
平均情况 86.3 365.3 39.3 54
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实验结论 5. LA-tree的树形结构均匀数据划分, 提高索引面对不同查询负载时的鲁棒性和泛化性能. LA-tree
的索引更新主要面临两方面挑战: 一是如何将更新开销控制在足够低的水平, 以避免显著增加系统负担; 二是如何

适应不断变化的数据分布与查询负载, 从而持续保持在线查询的高性能.
τ在表 8所示的更新实验中, 最优结果用加粗表示. LA-tree设置各节点自适应更新阈值   为评分函数较索引构

建时升高 30%. 如表 8所示, 与对比方法, 即定期重构方法相比, 自适应增量更新在效果和效率上均具有显著优势,
读写操作吞吐量提高 12倍. 在索引更新效率方面, 总用时下降了约 97%. 在查询性能和索引规模方面, 自适应增量

更新同样优于其对比方法. 定期重构方法在每次更新时需将原始数据、历史查询负载与新增数据、查询合并, 导
致大量冗余, 既使索引规模迅速膨胀, 也拖累了查询性能. 而自适应增量更新通过局部重构避免了这种冗余, 从而

在平均查询用时和更新后索引大小上均表现更优. 唯一的代价在于, 自适应增量更新需维护额外的分布统计信息,
使初始索引大小增加约 8%. 但这一开销相对较小, 几乎可以忽略不计.
 
 

表 8　LA-tree更新方法综合比较
 

LA-tree索引更新 读写操作吞吐量 (TPS) 索引更新总用时 (s) 初始索引大小 (MB) 更新后索引大小 (MB)
定期重新构建 11 000 261 239 409
自适应增量更新 143 000 7 259 305

提升 12倍 97% –8% 25%
 

实验结论 6. LA-tree的自适应增量更新方法能够同时保持低查询延迟与高更新效率, 相比定期重构方法大幅

减少了更新开销, 从而显著提升了动态场景下的索引性能.

 7   讨论: 数据库系统集成学习型多维索引

结合已有的学习型多维索引综述和实验类论文 [13,14], 学习型多维索引, 如本文提出的 LA-tree, 可以集成进数

据库系统. 本节将讨论集成学习型多维索引所需修改的数据库组件, 以及集成后对索引性能对比实验结果的影响.
集成需在数据库系统的索引管理器、存储、查询优化器这 3个组件上做相应修改. 具体地, 实现索引管理器

中离线构建和在线访问索引的接口, 让数据库系统可以调用 LA-tree. 存储的数据分页逻辑与学习型索引的数据划

分结合, 避免学习型索引同一单元内的数据跨越多页, 带来不必要的 I/O开销. 查询优化器部分更换学习型或基于

多维统计信息的代价估计方法, 原因是当前数据库系统内置代价估计方法通常假设数据表各维度独立, 估算多维

查询的基数很不准确, 需要更准确的代价估计生成合理的查询计划调用索引.
从实验结果影响的角度分析, 由于更多的外存 I/O开销, 各学习型索引性能相比内存场景会有一定下降, 但相

对传统索引的优势, 以及不同学习型索引之间性能差异的趋势基本不变. 首先, 学习型索引数据扫描比显著相比传

统索引有数量级的下降, 显然访问的数据分页数也相应下降, 这直接大幅降低了索引的 I/O开销, 从而减少查询用

时, LA-tree在这方面优势更加明显. 其次, 学习型索引筛选数据的算法复杂度明显低于基于数值比较的传统索引,
且避免了大量比较操作带来的分支预判错误, 大幅降低索引的 CPU开销. 此外, 随着数据库系统的缓存机制的不

断完善, 外存场景相比内存场景对索引性能的影响将有效降低. 本文的实验结果从筛选和扫描两方面综合比较索

引性能, LA-tree相比其他方法的领先优势将直接体现在 I/O与 CPU开销的减少上.

 8   学习型索引相关工作

● 学习型单维索引. 在数据库系统中, 每个索引通常作用于数据表的单个属性, 即单维索引, 用不同的平衡树

数据结构 [15,16]或哈希算法 [17,18]等把数据映射为多个分区以加速在线查询处理. 这些传统索引方法具有明显缺陷限

制其性能进一步提升, 如基于平衡树的索引在查询时需要大量数值比较操作, 使性能较低; 基于哈希算法的索引通

常会丢失保序性, 不适用于数值型属性, 而保序哈希算法 [18]的函数计算代价高, 额外空间消耗大, 也不适用于数据

库系统. 学习型单维索引的相关工作 [19−22]主要基于平衡树索引的思想, 利用机器学习模型替代比较操作以进一步

减少在线查询用时. Kraska等人 [19]提出学习式索引 RMI, 在 B树结构上用线性回归模型 (LM)直接从分位值映射
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孩子代替分位值比较, 消除了 B树中间节点上的数值比较操作, 有效加快 B树索引的在线查询效率. Galakatos等
人 [20]使用分段式线性回归模型 (PLM) 进一步优化了 RMI 的叶子节点, 提高了属性值到数据条目的映射效率.
Kipf等人 [21]直接使用回归模型拟合属性值的积累分布, 一次映射筛选与扫描替代了树结构的多层映射筛选, 大幅

提升在线查询效率, 但索引更新性能下降. Ding等人 [22]使用神经网络 (neural network)代替 RMI节点上的线性回

归模型, 降低映射误差提高筛选效果, 并在此重新设计了节点分裂算法提高数据更新操作的效率. 学习型单维索引

对多维属性范围/等值查询提升非常有限, 但是其基于学习模型的思想对后续研究有重要启发.
● 传统多维索引. 对于多维查询, 单维索引因为仅能筛选一个属性的值从而在线查询效率低, 学界和业界提出

了多种多维索引结构, 同时按多个属性上的谓词约束条件筛选数据. 其中, 二级索引 [23]先后筛选两个不同的属性

维度. 四叉树 (quadtree)[24]是一棵二维平面划分树, 递归地将平面中的区域按二维坐标轴四象限方向划分为 4个子

区域. 八叉树 (Octree)[2]是一棵三维空间划分树, 递归地将空间中的区域按三维坐标轴八方向划分为 4 个子区域.
这些结构的共同特点是只能对较少数量的属性做索引, 使用场景局限, 且效率较低. Z-value[25]是一种曲线映射方

法, 将二维空间的每个位置降维映射到同一根曲线上的点, 也可拓展到更多维, 缺点是计算量过大且对每个属性值

本身的有序性造成部分丢失. R树 (R-tree)[26,27]的核心思想是将空间对象按最小包围矩形 (MBR)分层组织, 主要用

于二维地图的索引, 也可拓展至多维的数据, 但是当维度增加和值域增加时, 树的空间消耗和在线查询用时都大幅

增长. KD树 (KD-tree)[1]是一棵二叉划分树, 按多个维度轮流均匀划分空间, 树节点过多和划分不够精细都会导致

在线查询用时长, 而这两点问题难以兼顾优化. 网格 (grid)[6]按每个维度独立划分空间, 把数据映射到超立方体网

格单元, 关键问题是忽视了不同属性之间的相关性, 对数据划分不合理导致索引效率低, 尤其不适用具有稀疏性的

高维空间. 总体来说, 传统多维索引数据结构, 除了具有单维索引本身的问题, 还有多维空间映射或划分效率低的

问题. 这些导致传统多维索引低效的问题, 是学习型多维索引所要解决的主要挑战.
● 学习型多维索引. 第 1类是地图查询索引. Wang等人 [28]在 Z-value二维空间降维的基础上, 结合 RMI的思

路, 利用学习模型提升了查询性能. Qi等人 [29]提出 RSMI模型, 构建了多层网络结构, 每一层都用 Z-value方法排

序数据条目, 进一步提升了查询性能. 王小丽等人 [30]提出 ZFT INDEX模型, 在 Z-value基础上使用 PLM模型提升

查询性能.
第 2类是范围/等值查询索引. Yang等人 [3]在数据库分片 (database cracking)[31]的基础上提出 Qd-tree, 不考虑

数据分布, 选择高频查询边界划分数据, 减少在线查询时额外扫描的单元, 由于不能均匀划分, 部分仍然需扫描大

量数据, 性能较差. Nathan等人 [4]基于网格数据结构提出 Flood, 在每个维度上独立划分数据, 用 LM模型拟合多维

数据分布, 并面向查询负载调整各维度划分密度, 降低多维索引在线查询的扫描量, 但只适用于各维度分布独立的

数据和各查询谓词范围比较一致的查询负载. Ding等人 [5]引入网格树 (Grid-Tree)根据查询负载划分数据, 实现分

治, 并利用条件累积分布 (CCDF)拟合二维相关性, 提出 Flood的优化算法 Tsunami, 兼具网格和树的特点, 但无法

解决网格结构难以拟合多维相关性的弊端. Davitkova等人 [32]提出ML-index, 将多维数据聚类成多个不相交超球

体再降至单维处理, 并利用学习型单维索引, 适用于较低维度的多维范围查询. Gao等人 [33]提出学习型单调空间填

充曲线多维索引 LMSFC, 先使用学习型参数化可变 Z-order曲线将多维数据降维到一维, 再进行分页优化和页内

排序进一步提高数据筛选效果. Pai等人 [34]提出WaZI, 在 Z-index基础上提出查询负载感知的学习型多维索引, 先
执行自适应分区令划分位置对齐高频查询边界, 再使用 Z-order曲线进行分区内排序. 这两种方法都基于曲线降维

法, 适用于低维情形, 难以拓展到较高维度的数据上. Li等人 [35]提出 LISA, 先使用网格划分多维数据, 再将各网格

单元内数据通过映射函数降维至一维, 然后再使用回归模型分片和维护数据, 由于网格和映射函数都难以处理高

维情形, 故该索引适用于低维查询.
比较两类学习型多维索引. 第 1类解决二维地图上的查询, 缺点是各维度的局部单调性有一定损失, 且空间曲

线拓展到更高维度计算量很大, 因此不适用于多维属性范围查询, 作为早期学习型多维索引, 其开启了后续进一步

研究. 第 2类适用于典型的多维数据上的多维属性范围/等值查询, 并在 TPC-H Lineitem[28]等属性维度在 5左右的

数据集上测试性能, 挑战在于查询性能的进一步提升, 尤其在更高维度的数据上.

刘佳伟 等: LA-tree: 查询感知的自适应学习型多维索引 505



 9   总结与展望

本文提出一种查询感知的自适应学习型多维索引 LA-tree, 设计学习型空间划分多叉树结构, 数据划分同时满

足均匀划分和查询感知, 并实现高效索引更新. LA-tree具有 3个关键技术点: 第一, 针对索引离线构建中数据划分

的挑战, 提出多层次查询感知的数据划分方法, 设计的评分函数和多级搜索贪心算法分别解决了扫描比估计和全

树节点维度选择的难题, 在多项式时间得出较优解, 数据划分优化效果好且索引离线构建效率高. 第二, 针对多维

索引数据筛选效果差、大量数值比较增加在线查询用时的问题, 提出基于学习模型的高效在线筛选方法, 通过设

计保序模型误差界限以及线性回归模型与分段线性回归模型混合的学习型空间划分多叉树结构, 分别保证了索引

的准确性和高效性. 第三, 提出自适应增量式的索引更新方法, 以学习型树结构快速定位数据更新实现增量更新,
以快速实时合并新查询扫描比与节点评分函数值实现自适应更新, 保持低在线查询用时. 实验结果表明, 我们的

LA-tree在多个数据集上在线查询性能均优于现有方法, 特别在高维情形下优势显著. 同时, 还通过纵向对比实验,
验证 LA-tree索引自适应增量更新方法相比朴素更新方法, 不仅有效保持了低查询用时, 而且更新用时极短.

展望未来, 我们计划进一步优化 LA-tree的实现. 学习型空间划分多叉树结构具有良好的并行化潜力, 由于子

树之间的独立性, 我们首先可以尝试实现子树级并行的离线索引构建和在线查询子树级并行执行. 在此基础上, 进
一步引入数据库事务中读写锁的机制, 实现多查询并行在线执行以及节点级并行的索引更新, 最终预期有效提高

通用的并行事务的执行性能.
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