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GPU Optimization Algorithm for Bitmap-oriented K-clique Enumeration Question
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Abstract: K-clique enumeration is an important problem in subgraph matching, and the bitmap algorithm has been proven to be an
effective method for solving the K-clique enumeration problem. Currently, state-of-the-art K-clique enumeration algorithms are accelerated
by GPU. Previous studies have not investigated the impact of sparsity in real-world graph data on bitmap-based K-clique enumeration
algorithms. Instead, static parallelization methods and bitmap construction strategies are commonly used on GPU, which result in low
computational efficiency. This study proposes a thread-parallel load-balancing scheduling algorithm for bitmap tasks, which resolves the
thread divergence problem while achieving high parallelism in the bitmap algorithm. Furthermore, it introduces a dynamic bitmap
construction algorithm, enabling bitmaps to be constructed and activated at appropriate times for efficient execution of the bitmap
algorithm. A GPU-friendly K-clique enumeration system, KCMiner, is implemented, which adaptively selects optimization strategies for
K-clique enumeration tasks. Experimental results on GPU platforms show that the proposed method achieves up to 7.36 times speedup
over the baseline K-clique enumeration algorithm and up to 30.2 times speedup over the baseline subgraph matching system.

Key words: K-clique enumeration; subgraph matching; bitmap algorithm; GPU; performance optimization
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1. for vy e V do // Level 1

2. Intersect(N (vy),1)

3. end for

4. Function Intersect(vlist;, k)
5. if k==K then

6 Get an embedding e

7 return

8. else
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8. end for
9. end for
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13. return
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21. endif
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G2 1P XA B — AN BUAE S5 IR A, MR IERER AL I & cur_bitmap BN — ML WEMMX P —HIR T 32
N RAES, e A— ORI B, AN AR 2 A — N RUE 55 AT AR R BB AT 55 58 1) 21 I ik
B G, SR B BTSSR BB, RS TR 5555, R X— 4R, ERIIREER & 5E A cur_bitmap.
X FE S g AT AR TSR BRI — 2.
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Level 4 55 50 7C: (cur_bitmap_idx,i) [0 011 1] &[0000 1]

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4
n~£MO111||oph11| o] [oornni]  [oo1i)
Level3 71 ~~[010 0 I 1 01010 1 1 00011 1 000111 000 11l »
T:'" 070001]: J0l0loo1] | [o00o1] | [ooooi] {[oooot] i~ IR
b~lo0000] [or0000] | [00000] ¢ [000j00] | [00000] !
P EEEE EEEE R R
L LD EL LD RO LT o] T Jilostes] [ |
Size<4 E Size<4 E Size<4 E Size<4 E Size=4 E
o i O 2 i e 3 A S E%ﬁi%ﬁ Eﬂ‘iiﬂé%ﬂ.%ﬁﬁﬁ
1] E W
|(0,2)|(0,3) (1 ,3)|(0,4)| E |(0,2) (0,3)|

i
T, T,

H
?03

©

cur_bitmap_idx=0 =3

Level 3T T AZIET | 471143 7] 357 ]

P AN -~

5 XGRS I LB A

BOK 3. MR BB RE AR 55 T L S

HIN: warp_size, 8F25 thread_id, cur bitmap;
fth: A S e

1. Function BitmaplIntersect(cur_bitmap, deg k)
2. if k==K then

3 Get an embedding e
4 return

5. else

6. for i € (0,deg) do
7 if cur_bitmap[i] == 1 then

8 load in buffer(thread_id,i)
9

end if
10. if buffer size > warp_size then
11. launch(cur_bitmap, bitmap (i))
12. next_bitmap = cur_bitmap & bitmap (i)
13. BitmaplIntersect(next_bitmap,deg,k + 1)
14. end if
15.  end for
16. end if

17. end Function

Kl 5 250 T SR R X AT S 1 R Rl Rk 4 DNERFEIE R 4 A cur_bitmap, WEEMIX KNG EN 8.
L AE A Cycle 0 TTURTEE cur_bitmap, $0AT F| Cycle 2 IN, FiELE LR T, I cur_bitmap HE|— A RAE 55,
55 (0,2) BB ARUZZ i X BA S v AH RIS X2 v X BA B i AL — AN G2 X, BT 4 AMESS, i E AR S IRk B 2
{E5%. 24 Cycle 4 SERET, XEM X a3t T 6 MESS, CEFEH— G X IR/, BB X )8 8 — R4
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FRT. HNANBIPX PR 4 MES TR, 4 DRI E AL H BN —AMMESS, HARIRAE 5% 5 ICHR 7R 78 s B 4 4r
SR Level 4, JE4kEEH4T 5 S BB AR, AN EAEPAT — DT HER T IMZEE S, 2% E, 4 4
LR AR R IR B BN X I B2 Level 3 4k UT 5. TR BIFE Cycle 4 B ©& Rk cur_bitmap WK 2,
I ERER I 2 DM X P RIR AT S5, B WA 4k S0 6 A BT 55, BRI 2 MR X A IE 4 MES, BR
B4 MES. A IX A B R IAT S5, TRIFR ARG DX AT 5% 1A B 402

Ve B NG X 28 B R IFHATE 55 K R R & — N R X KNS ) T — A warp W IR TR S, AT AT I ZI3H FRAT
S5 AN 2 AE AR5 SR G AT 25 B3 T 15 2 1 DX K/, TR ] BRAR R N G2 v X il — A K /AN 52 IR ERBA A7)

5.2 IR RER AL E SIS SRR

TSI 5 P AR o R R B 72 SRR, A B BVE R ARTEAT AT O T Re AL T F i R S R G R
iz B A o A B 1 AL, £ B S R B A ST I TR) S8 S 7R 3 ) U A7 R R 0 iz b, fEASAr B 55
TR R AR, 8 R IR A R RN A X ). =48 RN E A B OGAL B S (Al ) 1 AL 8 A %, Rtk
BN 5 N A 08 R 2 M R0 T A2 B S (R % L.

JET i LA S — DTS AT B R G B — %4 ERA TR AL EEEE AT, e T B e
2% ). SR AEAN [ 2 e I 2 ), S P B0k A B S s 0 P 2 W A AR UK 22 e, S 7.2.4 T IR SR 13X — LA,

T ALAEAT B BEERE NS 5 BT IN A R A 23 ), RATTSR 1 T — PR R ) A B Sh S i . B,
BATH—ALE A 1AL o5 ke UGB y.

y= (Zj:z#bitl)/degz.

FRATVAS 2= [ 5 HbAg P AR T 1) 48 s B A B — 2% B AU A JL AT 82 & ok M A . A S, FRATIAE BR AR 31
IR ZE S AR P E R — VTG O IR ER B o, SIS A7 B .

TERREIRIRHEAT BIACZE R AR b, A8 IR 2 IR A L AT B 48 G i T LUK IE A7 (&1, AT 49 B67 K FE T 4, T8
IR g A B 2 1) 6 s, s, RS 1 EMIEAL ], N(B) B R /NG R T4 B R 2. SR 7E R
N(B) # 7 B, RETAD, J, K} 2[RI FLIERE, X RBURK A E R R a1 A7 B, AR LA
H2 EHD, I, KHEATERMETE NI EL inEl 6 Fros, 128 2 2 HiE 1 53N Ar B 23 () o, A8 T e —2
() 1AL 3Ryt e T AL B SR TUAR I o R0E 7, W] LA R 2 B TG 280 J A e A A 5 v B IH44.

____________________________________________________________________________

P o
] F— Z 4 itbitmap

I

I

|

C 1011100000 Sparsity in extension: :
D [001100000] @ F# kAN i | l
7 Jooo100000]  EE A HAbitO ! D[ o011 O F7 R i e
K | l

|

I

I

I

I

I

I

© AR (RLGH5E) T A Ibit0R >
Q000000001 sk ke 57t L} ol © ok i)

000000000 K] 0000 PRSI
PIN(B) fE5 5 BINBNC) f:45F l
138 %5~

Bl6 AIFEAIE bitmap HIFETEZ 5

FATFEH — PR AT I Ze TR GLE y ZhAMIEAL B D795, B 5, FATLL warp D9 57 8 4730 I MO AE 55 101
W, AETE AR & RS AMZEES I — 2, BATE S P& G 8y X TAR B AL 718, A =R



10 BB AR R B B )

vt B B g . e BT B L 1 AL R An RN 2 S R AL S R ME, warp B R
SERER A SR IFHEN T — 2. ISR AL BB ) y BRAEL, WA P BRI, A4 R0 2 TR %A 5 S R AR

L7 VA EIE Y (DR AP

N HUREE G(V,E),K;
i BT sEl e.

1. for vy e V do // Level 1

2. build or _intersect(N (v,),deg(vy),1)

3. end for

4. Function build or_intersect(viist;,deg, k)
5. for v; € viist; do

6. viist (v;) < viist; AN (v;)

7. bitmap (v;) < viist (v;)

8. #bit1+ = popc(bitmap(v;))

9. end for

10. vy =#bitl/deg’

1. ify > Ak) /ARSI AL R R 5 KT A, J5 A B R

12. for v; € viist; do

13. BitmaplIntersect(bitmap (v;),deg,k + 1)

14. end for

15, else // A JZ R FROor IR 0 BE /I T BEL, ) vlise 25 RN T — )2
16. for v; € viist; do

17. viist,,, « bitmap (v;)

18. build or_intersect (Vlist;,,,len(Vlist;,,),k+ 1)

19. end for

20. endif

21. end Function

TE SISV R 3, BRATTIER T AN [F) o7 B B 14 o o) 14 BB BT s i, PRI A AL B BLVE B A () BRI X 48 5 3847]
LT GG MR BT SRt G I A7 B
53 GPU AFHIE AL KCMiner

G EE 4, BATEI T —HF GPU KU K-BIMs R 4 KCMiner. %&T thread 47 (19 5 335004 558 B2 3
W& AL BN A R @ HE R KCMiner 8 . KCMiner LLE G W 1) — %3 e 1E AT 55 5000, W il & E R —
%10 e fEN— AT 5. KCMiner B S0 BT S ATRAL BE 43 28, T1 5 — 2%l e LRI ASEABIR ARG K/, LAl
{ERBAMEAT S BIRE. X/NT 32 BT FIR T 1024 (941555 AE A MEAL.

W AT 5 R~F /N T 32, Tl Aa 3t B 67 P61 2 ) 67 96 /N T 32, KCMiner # /8 L R A, B T35
(A7 fitg 25 (BRI, A7 B 25 AR 8 5 W A7 A T8 GPU L A7, BN R R MCS I 2 h 77 A= IR s JE v ] 45 SR A4
TERBTE AT AR A, IX P 7 20T DAL 3B 3 v A 1 1) R

KCMiner BAR#E MO AT 55 RAT 1B R AT AL B 5070, MOS8 RS R T 1024 I, 44 2H — A block A2 — AN
ZEAT 5, IR LA block H47 77 sUFE R, AN 2 EFF IR MREEIR M 7 L4 0 e s — A warp SRHAT, warp N
F4%IE thread FEATRISMESS . BEZBE S RS /NT 1024 B DL warp 547 AL — M MR E S5
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6 BIROM

6.1 B X E 55 B SR G

X T HEA 1Y thread FATHE, BT GPU 1) SIMT FEATHRHE, —A warp HETE LBEHATAHRITE 4. Fitb—4
warp T E LREFZ 8T cur bitmap " HIR—46L, REEHE LREEPATHREATLS, ITA SEA R ERATHFM
Fi8 4 75 B LI BRI 18] S % SR e AR A N 2 MRS Bl 2 AR OE, (R — I 2 R 1 NERIRTE cur_bitmap
HHEEE 1 A7, IR (R 2 BE N O (degxwarp_sizexK).

X F O, FTA RIS G — i ST S5, TR warp JRAE S A XU BA SN BA IR B A, 1 e 5 4 #5
A LLH thread FI4THAT, 15 SIMT HATRHE R K — B, X — P A EIRIEN O(deg). W T IRAH N2 RH 1 M
FRLE cur_bitmap IR 1 AL, BRI 8] 5 A% BEA O (degx K). FATREAE 246 il & 5 FZARAL J5 5 warp
HEPEE R A AR SR R T

W 18 B BB 8 B AU v X 3 T 5 ARG AN thread FFAT 1A BE AR AL 5 RE. XA 25 AT 55, 4r
Pl 2 ] ol A B DR 1 A RIS R A cur_bitmap WA 1 A7, ¥4 5 FRRCOR I AE AR 2 1], 4 3 A 5% TR
W 4 B R R FE A SR AR T8, I BLAR 75 B R AT 55 BA B 020 A LU IR R SRR, FE 28 M 20 VR X A R %
FERE—AK/NE E 9 64 MES S0 IR 25 8], S 2RI B AN O(2xwarp_sizexwarp_num).

WAL, W 075 HEHE B 58 MBI — R B R N AR B 22 b X P BAT 55 7 B0 8 ) 7 B A2 A B AR . X2 R R
A cur_bitmap I i BLI 1 AR IR IR AL 23 (B A § AL, Rl — A Cycle "R B A BT 552 g [ i
AL G F)TALE warp WA R Y2 AR Vs 4707 B R SRR, & — P a) SR 75 42 i) AR R A Ak
6.2 TSR EE AR FFHMNE

b T RERETE, [ TELE Level 1 AR I, B A0 BT HSRAR K-BIRCE (AR 10 5228 B2 O (deg(vo)<K).

T Rk, 2T e A PR RS AL R TR A7 1 2 TR A i R N R A R A B R e A Sl s
W pope () SER— R INTHSE, BRI 21 22 i 2 A6 22 e A7 P 22 ) O A FE, TP AR, S i — i i
A7 B TH 8 58 [F) T B F o R AT IR T4, RE R E A @& 1 R E A& 1 Level Jo HA 52,

FE SR JZE O LA A AT DA o PR TE SR A (RS kR I S T SR I TR 2% R
O(deg(N, N ()Y X(K —k)). HBAR 1 LIS BOR AT 8 & SRAZ IR BUR 22, AHAEA A B IR A LA 0 A7 ¥ 2 i
A] DA 25D 3K AT DK BEAR S AL B HEAT 4 5 B AR B o T8, S b, 3 ] DA R B0 7 B ) K o
R 0 fr. PARLER @ EBCR, RN I TUARERAE.

= J5 T, AR FE IR B )2 Ok A A I TT DL B & I AR ATE 55 Rl o 1 SR 3 g Ak, B anTE SR 2 IE R
iF, AT LA B4 SR E R EL— AN e MR 4 warp, ST e B s FH Z 0 M R ISR A5k A0 G, DLRZEB B SR E R
T B A

7 SERRSMAR

71 ZEWKE

o UGG BAE— G HEE 8 5K NVIDIA V100 GPU IR %5 28 L i¥-fli KCMiner, B & K-FIMZ$SELE T1E. &
ik GPU B 80 Mzl 2 /b #E2% (SM) 1 32 GB PIAF, AR % %% L4 2.10 GHz E5-2620 v2 Intel Xeon CPU, i LLig
1T CPU 1) K-HIM 2SS, IR S5 23 (1 34E 24 Linux kernel-5.15.0, NVIDIA nvee 224N 12.2.

o KRR, AL S KCGPU MR EIESE, X2 H Al GPU L ek ity K-FIMs TR IAMER 5 A~k
TH 1 B SR 42 R IE B KCMiner (R BE, Q138 1 AT7R. X S8 /2 A SNAP 774 FE FR 3RA5 16, 8% F 1745 7 BT
M RGLAHDE TAE.

FATVE T AL DS AT B[R], A G358 MR A S R B 4R B e 2 0B . ZEBRIAB L, KCMeiner 1814
VBRI M AT 55 BB, R warp S — 28300 )8 B — M T %5



12 BB AR R B B )

R BEHEEEASH

G/ T R Kk kA4 IS UN S EIEK A= PN
as-skitter 1.7M 22M 35455 231
com-dblp 426k 2M 343 113

Orkut 3.IM 213M 33313 535
Friendster 65.6M 3.6B 5214 868
Livejournal 4.9M 85.7M 20333 686

72 SWERSHH
72.1 EARMERE

J93TFAl KCMiner A& 75 b At K- #0246 AR oy 210 oty 14 B8 BE A, FRATHE KCMiner 5 3 A B iR stk i) TAE
THERELLE: K-AM2$ 89 GPU 528 KCGPU, ‘B 1 A FHE I8 A thread J:47; BN S K-FIM24H9 GPU F
EIVCHE £ 48 G2Miner A1 GraphFold. G2Miner ANifi Fi A7 B &1k, 48B4l F — 4048 R 58 sl A 3R 32, GraphFold 7E
K-PAAL 28 1) 8B F 8 T warp FEAT BT B SAAL; K-FIM24 1 CPU 2B EBBKCEY), A1 64 Lk fEizfy
EBBKC.

# 2 X7 KCMiner 5 GPU 4L K-FIM 2850 KCGPU 1E L Scith 7 SR 4 b 1 B3 B AT I 1) seig:
S5 B R B KCMiner 72844 ft B F 40T KCGPU, f i vl S2FL 7.36 15 HIANE, V-3 hnid kb 2.94 5.

# 2 KCMiner 5 HAth K-FA1H025 8] R K fif R IRIE AT I R] (s)

K LAETES EBBKC G2Miner GraphFold KCGPU KCMiner
as-skitter 5.75 0.034 0.029 0.034 0.031
com-dblp 0.95 0.006 0.012 0.008 0.003
4 Orkut 83.5 0.596 0.491 0.426 0.457
Friendster 63.74 7.543 3.566 10.215 3.257
Livejournal 46.17 0.325 0.307 0.214 0.102
as-skitter 8.83 0.119 0.078 0.069 0.033
com-dblp 1.02 0.016 0.019 0.016 0.005
5 Orkut 127.6 2413 1.309 1.014 0.81
Friendster 164.7 15.404 5.624 11.796 5.567
Livejournal 283.5 11.957 2.612 0.957 0.845
as-skitter 18.5 1.098 0.558 0.245 0.101
com-dblp 2.13 0.3438 0.055 0.042 0.013
6 Orkut 243.8 11.416 5.66 3.506 2.019
Friendster 284.6 30.857 10.76 17.22 10.046
Livejournal 6350.7 579.471 132.68 31.34 23.474
as-skitter 87.7 12.153 2.654 1.434 0.314
com-dblp 20.12 7.381 1.025 0.545 0.074
7 Orkut 503.7 58.305 25.96 11.719 4.27
Friendster 896.3 88.899 21.712 45.697 12.16
Livejournal >144000 >144000 6146.57 1386.73 442.96
as-skitter 523.3 115.2 28.881 9.531 3.681
com-dblp 230.5 134.259 12.532 9.031 1.389
8 Orkut 1874.1 295.927 130.64 45319 25.508
Friendster >144000 673.547 213.58 99.866 33.086
Livejournal >144000 >144000 >144000 96450 44616

GPM HEHE Hid &0 2 K- 28 1) GPU SEBH, FATTEEL G2Miner 1 GraphFold PiA™f sdk i1 GPM HESE K Lt
EERE. 45 R IR, 5 G2Miner AH L, @ T SEHL 99.1 A5 II#E B, 5 GraphFold #H G, KCMiner $x 5 1l SEH 30.2
s L.

TR K-RIM2S R —TUE A 7E GPU RIS, FAI 1K KCMiner 5 EBBKC #HAT b4, 415K 2 FioR, 5
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EBBKC #H L, KCMiner FISF3IIE A 187.8 £, i ik 304.1 5. th4bh, EBBKC JGi% 3¢ #F Friendster I Livejournal
ey

SRR KW, KCMiner A 805 7 K-FIMEAE GPU _ERITERE. 55 3 Pl deidk i K-S 73 b, e sk
LT RN, X BT LR 3 AN (1) KCMiner FIZREFE IAAE 25 0 FE BVE IR/ T GPU LR FERI %,
(2) KCMiner AR5 7 57 FE 3l A5 #4711 2 1), 2 v B B9k (9 T F A% 5 (3) KCMiner AR MU AT 45 1O R ST IE B R
SERI GPU iR,

5 b [RIE, AR S8 45 RBATR I, 24 1 B /N (K=4), KCMiner B AL ZCRANIH 2, H 2 M58 /Mg
B4, X RN REHOR, TF LR BT 5% 0 B P A el M e e o, HLASL I S0vck v v s or JT A R
5 P AR 24 i) AR 1S I, KCMiner (R A0 RS Z 145 LA™ 2.

722 THRERSLEG

NT R AR AT 5 AL B Sh A HIE A GPU AT I S 52 B SR A Mk B BTk, FRATTLA thread
HAT I K- 2¢ GPU FHIR IR E T 5 415 LLSEa, 43 52 thread FFAT IO EEASIE . B FIAE 2SR B . Bl
P EIB SRR A5 B2 I BB @ At — 2 BN GPU R I S S Bl

T BT G — LA AR AR A 5 2 i 3 i ) k2 (R, FRAVT %o A £ PR A AR P A R ik s kAT T
J3—1k. LA thread JEATHIPERE LR, FoAhE A DU B HEEAT IR — 4k, W0 7 i, ZRFRAT 45 U BE 7 K (9 1 g 2
FHCN R, 5 thread FHATAH ELIZAT I P E998 20 60.3%. BB FH A7 PRI B2, 55 thread 4T A1 EL iz 471 18] 7 1
WD 28.5%. BRIk Ab, & 047 EZh AR R GPU AU 19 52520 5 ol DL — B4R FHPERE, 1817 I R] S 25 P& A
22.6% A1 37.5%. XM KCMiner 7 fI4E4L 572 7T LUK EL 325,

1.0
99 0.8
Jm
=06
X~

| 0.4
“ o2 Ma L M

0 . <

as-skitter ~ com-dblp Orkut  Livejournal

O ThreadJF17 O3 (R4 B3 7 BB S
= ST T KBS =3 S INGPU AT 153

K7 7-HM 2 R s 0 4 2R

7.2.3  ZRARINAT S5 R BE B A Ak AR

AL, FATEH NVIDIA Nsight Compute 68 7347 T B X% KCMiner #47 7 M. 7 BRZRFEHUEF warp W [F)
BT [ — 25 TR A I RS 29— warp AT R ERIEPAT R — K48 4B, GPU IIALZIA B KAk, TEER LR TR
FoiaE 32, BAFA T H SIMT 24 AT IR 1. W)E S 8 B, BEA K-FIAUE K, A (E AT 45 8 B
I warp P3P ITE R ERAREOZ B8/, T A P 28 R 1804 55 R 2 )5 7T 4 warp PN R ZR R 55010 80/ R B R AIG. 7 7-14]
Mozt o, AT 55 B S, A warp RSP ENEIRE R ECP N T 2.6 5. X R B LRARAT 55 1A 5 5 G 22 A
T LR S 0 ) L
7.2.4  BURESHT

NTHRBEAFRBLE FIEANFZFAE A B R Z 57, oA TR BT 55 16 B 8 Il o 04T M. AT
T F AR B it A L0 R A A T BRI AL B 25 (R RGBTy, BB y TR P AT 45 1l o0 — A
T 55 IX 0], AT 55 X R HAAT P K, — IRTE S 2 2R A 2 ), BRIV FH 4 N 320 0 6 st 2 SR 4T B A Dy 1 B A .
F—IRLELE 3 E R E 2 8. i 9 Frow, SCiegl TR sSE T A SCZ /010 WU AR, AN R A B A SRS R K- Az 1)
PEREFEARAE . 76 7-FIM s, 7258 3 B EIMPEREIR 2 T1ESE 2 EREMEL HE, X T 6-FIM 8,
RE YRR NT 25% B, 7258 3 RN 7 2 S8 AR IR BRI, 1% & B IR I A B P4 5 3RA A A B I P R
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PEI a2 B AR R IR EEAE I, BUAME N 1 JE =20 B AT R AOTF 8 JE 2 A I L M BE DL 38 T
ARG5S IRATSLZARE 15 € ROMCE I K BB AR y B B Z RS R B A AR y B
[ Eessmne I grmi s i

30+ 30 F 30 +
ﬁ 2t @ 20 ﬁ 20
5 5 é_%
Eiof Eiof %10
0
Orkut  Friendster com-dblp Orkut  Friendster com-dblp Orkut  Friendster com-dblp
(a) 5-H41 (b) 6-H1 (c) 7-41

K8 K-HIHeE AR5 M AT SRS warp P EIHEREAEELE 1L

s Level 2/ A1 ~o- Level 31847
0.20 0.20

0.15 m‘ 0.15
= 1/ \
E .

0.10

ATIRFIE] (s)

0.10
& WA & |
] X by | \
0.05 H"!IFKM'.:: ....... § x—tx = 0.05 }’ A i‘uﬂwaN
byl ! WX rbaad, e
£ \M‘ y basaast® “‘\k
0 0
0 10 20 30 40 50 0 10 20 30 40 50
FRIBLIE (%) T EE (%)
(a) EFriendsterfh 1T 6- A M 5é (b) 7EOrkutPh AT 6- [ M 26
L5 2.0
1.5 foed
2 10 P = O |
Z X Z ‘
e 1 M W2 0 et
iz AL iz A
05 a ﬂ", ] { \a A &
A o Rl 4”0 g
A £y
il 08 Ay R
0 P 0 __M o _
0 10 20 30 40 50 0 10 20 30 40 50
FRIGLIE (%) L (%)
(c) {EFriendsterff 7 7- K¢ (d) 7EOrkut AT 7- 1M

E 9 ANEEMEMENERZESR
72.5 WY RNV
9T 38FE KCMiner £2 GPU M1 AT AT R, TAIE— B4 8 4> NVIDIA V100 GPU [M#La% LT
S8, 9T 48 KCMiner 1& B2 GPU BC &, AT £ B 10id 5 = A e i 7 14 w2 ML i dE &, 476
SELA R GPU. B 10 SR, BE%E GPU £ in, 7E 5-FM 6-H LaT WLkt &, 8 RInE i =ik 2] 7.53x 1
7.36x. {H 2 o] AL K, 482 S 2 BONIRT, 7-H ™ R RO RS A 328, 8 RN e e R ARk B 5.25%. iX 2
RMREHINZ G, %105 BB S A IR R 53, WA TAE R 2 LA s R NS RI5, SR T4
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R @B 6 K-BARFA GPU AL Bk 15

JERIIAES, 5 EAE IR R B XI55 B warp Z R RAESS T BEA Rt — B 5 TH T4 R Itk 7 I

% GPU 1¥ )5, 5 KCGPU R BRI BEAR I, KCMiner 114 REFEFHTTIA 29.37 £5.

+ Orkut = Friendster + Livejournal

8 : 8 8
7t i 7t L 7t
* - . r - r N -~
Bal o = e Bl e
=3t ot =3t e =5l o
u Faa
2} g 2 2r a7
1 &~ n n n n n 1:’. I n I I L 17-". i L L i n
1 2 3 45 6 7 8 1 2 3 45 6 7 8 1 2 3 4 5 6 7 8
GPU¥ i GPU¥ = GPU¥ i
(a) 5-A (b) 6-HF1 (c) 7-H1

10 KCMiner (1% GPU T[4 Bk

8 B %

(0AES

FEASCH, BATIR M T KCMiner, —Ffik T2 B K-RIAL%E 7] B8 GPU ALAL 5. BLS b i it M 1

SR — MR ), B R T 7R PR, X S PR AR AR R AT T ik IR A A, B

LA FIMEAR 5 [ A A4, 8 T RO ISR, A SCE St 17— FhdE T thread JFAT A9 BT- 47 I
55 VR L SRms . D 1 DR R P AL P, vt 7 — PR i R ) s A 6 R 03k Ak, KCMiner 38 14 A\ 734

Wl

A 55 RFAIE, AT REWS BR A 5 78 AT 55 2K B 18 Rk AL 5% 7E NVIDIA V100 GPU LA I 32 e iodia 4t

1T ATH T, SEIR 45 K B, KCMiner (14 8 L i e it 1 GPU 34T K-IM 24 5% KCGPU 2 32Em T 7.36 £
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