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摘　要: 深度强化学习已在多个领域取得了显著突破, 其中策略梯度算法因适用于处理非线性和高维状态空间的

问题而被广泛采用. 然而, 现有策略梯度算法在实际应用中仍面临高方差问题, 这会导致算法收敛速度变慢, 甚至

可能陷入次优解. 针对这一挑战, 从隐因果模型的视角提出一种策略梯度方差优化方法. 通过引入隐变量刻画未观

测随机信息, 构建并学习隐变量因果模型. 基于隐变量因果模型, 提出因果价值函数, 结合长短期记忆网络, 根据时

效性区分衡量未观测随机信息对价值估计的影响作用, 提高动作优势函数预估的准确性, 降低策略梯度方差. 实验

表明, 与前沿的同类算法相比, 基于隐变量因果模型的方法在多个任务更具有优越性和稳定性.
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Abstract:  Deep  reinforcement  learning  has  achieved  significant  breakthroughs  in  various  fields,  with  policy  gradient  algorithms  widely
adopted  due  to  their  suitability  for  handling  nonlinear  and  high-dimensional  state  spaces.  However,  in  practical  applications,  existing  policy
gradient  algorithms  still  suffer  from  high  variance,  which  slows  convergence  and  may  cause  suboptimal  solutions.  To  tackle  this  challenge,
a  variance  optimization  method  for  policy  gradients  is  proposed  from  a  latent  causal  model  perspective.  By  introducing  latent  variables  to
characterize  unobserved  random  information,  a  latent  variable  causal  model  is  constructed  and  learned.  Utilizing  this  model,  a  causal  value
function  is  proposed  and  combined  with  long  short-term  memory  (LSTM)  networks  to  differentiate  the  temporal  impact  of  unobserved
information  on  value  estimation.  This  approach  improves  the  accuracy  of  action  advantage  function  estimation  and  reduces  policy  gradient
variance.  Experiments  demonstrate  that  the  proposed  latent  variable  causal  model  outperforms  state-of-the-art  algorithms  across  multiple
tasks, with better performance and stability.
Key words:  deep reinforcement learning; policy gradient; variance optimization; latent causal model; causal value function

深度强化学习 [1]通过深度神经网络高效拟合价值函数和策略函数, 已经在游戏 [2]、自动驾驶 [3]和机器人控

制 [4,5]等领域取得了广泛的应用. 其中, 策略梯度算法 [6]通过沿着累计奖励增大的方向直接优化策略参数, 在处理

非线性 [7]和高维状态空间 [8]相关的环境场景具有显著优势. 然而, 由于实际应用中策略和环境的随机性 [9], 将现有

大多数策略梯度算法应用于实际场景仍面临着高方差问题 [10]. 这种方差会导致算法收敛速度变慢, 甚至可能陷入
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次优解. 因此, 研究一种优化策略梯度方差的方法具有一定的实际意义和价值.
为了应对策略梯度算法中的高方差问题, 目前的工作通过重要性采样 [11]、改进梯度更新过程 [12]、减基线 [13]

等方式来优化策略梯度的估计. 尽管现有方法在一定程度上缓解了策略梯度算法中的高方差问题, 但它们仍然存

在一些局限性. 重要性采样方法通过计算不同策略样本的分布差异 [14]来降低方差, 对样本内部的随机信息并不敏

感. 改进梯度更新过程的方法通过限制策略更新幅度 [15]或改进梯度估计 [16]来减少方差, 未能充分利用环境的动态

特性. 减基线法性能高度依赖于基线函数的选择, 而已有的基线函数未考虑环境随机机制 [17], 应对不同随机机制

的环境表现较差.
针对这些局限性, 如何充分考虑环境随机性, 降低策略梯度估计方差, 是进一步提升策略梯度算法性能的关

键. 在实际应用中, 环境往往具有复杂的动态性和随机性, 不同状态间存在着错综复杂的关系. 传统方法难以捕捉

这些关系, 导致其在面对环境变化时表现出较大的不稳定性. 如图 1(a)在无风时, 月球登陆车 (Lunar Lander)在决

策动作后的落点为 B1; 但在受到风等未观测随机信息的影响时, 月球登陆车位置在相同动作决策下发生偏移, 落
点为 B2, 导致得到的奖励结果不同. 针对类似场景, 传统智能体只建模环境可观测状态、动作和奖励的马尔可夫

决策过程 (如图 1(b)所示), 使用状态作为价值基线判断的拟合信息源, 以此计算动作优势估计值. 在不同未观测随

机信息的干扰下, 传统智能体计算的动作优势估计值会出现不同的波动, 使策略网络出现方差抖动问题. 这种情况

下, 传统的价值基线便不能辅助智能体从根本上解决环境随机性导致策略梯度高方差的问题.
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(c) 隐变量因果模型(a) 无风和有风的 Lunar Lander 环境 (b) 传统深度强化学习模型

图 1　隐变量因果模型建模
 

通过上述分析发现, 如果智能体能获得环境的随机信息, 以此辅助价值评估, 便能让策略梯度算法更准确地估

计动作优势的值. 此时, 动态环境中未观测的随机信息可能在智能体做出决策动作后, 扰动下一时刻返回的可观测

状态信息. 这部分未观测的随机信息可以刻画为隐变量, 并通过因果模型来建模如图 1(c)所示的动作、状态和奖

励之间的互相影响机制. 因此, 本文从隐因果模型的视角提出了一种策略梯度方差优化方法 (policy gradient variance

optimization, PGVO). 该方法首先引入隐变量刻画未观测随机信息, 构建含有隐变量的结构因果模型. 接着, 基于所

构建的动态环境的结构因果模型, 以与期望回报存在直接或间接因果关系的外生变量为输入, 构建因果价值函数

(causal value function, CVF), 识别隐变量对期望回报的影响. 最后, 上述步骤可以通过利用深度强化学习过程中收

集的轨迹数据训练因果模型, 学习动态环境因果机制. 利用因果模型推断的环境未观测随机信息, 进而使用因果价

值函数评估当前时刻的价值, 降低策略梯度估值中动作优势估计值的方差.
本文主要贡献包括以下 3个方面: (1)提出一种基于隐变量因果模型的策略梯度方差优化方法. 引入隐变量刻

画未观测随机信息, 构建并学习隐变量因果模型. 引入因果编码网络和因果解码网络, 将难以求解的后验分布问题

转化为变分下界问题, 确保因果模型对环境因果机制的拟合能力和对未观测随机信息的推断能力. (2)提出因果价

值函数, 结合长短期记忆网络, 根据时效性区分衡量未观测随机信息对价值估计的影响作用, 提高动作优势函数预

估的准确性, 降低策略梯度方差. (3)在 OpenAI Gym平台 [18]中, 将基于隐变量因果模型的策略梯度方差优化方法

(PGVO)分别与 PPO (proximal policy optimization)[19]和 HVF (hindsight value function)[17]进行对比, 验证了本方法

2  软件学报  ****年第**卷第**期



的优越性和稳定性.

 1   相关工作

 1.1   隐因果强化学习

因果关系在深度强化学习中的应用已取得显著成效, 为解决模型“黑盒”问题提供了新视角, 提升了系统可解

释性. Lin等人 [20]提出了面向自动驾驶的安全感知因果表征方法, 通过将因果结构融入离线强化学习, 显著提高了

决策的可信度与安全性. Chen等人 [21]研究了因果感知大语言模型, 展示了如何通过因果学习增强深度强化学习智

能体的决策能力, 使其能更好地适应和行动. Wang等人 [22]开发的 ERCI方法将可解释的经验回放与因果推断相结

合, 使深度强化学习系统能够解释其学习过程和决策依据. Cao等人 [23]的研究则聚焦于因果信息优先级排序, 通过

识别关键因果因素提高了深度强化学习的效率. 这些研究表明, 因果推理正成为连接深度强化学习性能与可解释

性的重要桥梁, 使决策更具可解释性.
在这些因果强化学习方法中, 隐因果强化学习作为一个新兴分支与本工作密切相关. 隐因果强化学习主要通

过隐变量建模环境中的本质特征和不确定性, 可分为两个主要研究方向.
在环境表征与建模方面, 隐变量用于捕获环境中的本质特征和不确定性. Zhang等人 [24]通过双向训练提取任

务相关的因果信息, 构建环境的稳定表征, 在连续控制任务中实现了优异的泛化性能. Bennett等人 [25]针对离线强

化学习, 通过隐变量显式建模未观测的混杂因素, 在保持计算效率的同时提升了模型泛化能力.
在环境适应与迁移方面, 研究者提出了基于隐变量分解的方法. Huang等人 [26]设计了变分推断框架, 通过预训

练实现环境变化的多维度分解. Feng等人 [27]采用因子分解方法处理环境迁移, 利用结构化隐变量表示提升了知识

迁移效果和可解释性.
然而, 现有基于隐变量建模的因果强化学习方法主要关注环境表征与迁移问题, 对策略梯度估计中的高方差

问题尚缺乏有效解决方案. 策略梯度方差过大不仅降低收敛速度, 还会影响收敛时累计奖励的性能. 本文从因果模

型角度出发, 提出一种新的方差降低方法, 通过因果结构的显式建模提升策略梯度估计的准确性与稳定性.

 1.2   降低策略梯度方差的方法

策略梯度方法的发展始于早期的 REINFORCE 算法, 其主要基于直接优化策略函数和使用梯度上升的思想.
在策略梯度方法中, 策略梯度估值的方差会影响算法的收敛速度和性能, 对算法的稳定性和训练效率有着重要的

影响. 为了降低策略梯度估值的方差, 研究者们提出了多种方法.
一种常见的方法是重要性采样. Thomas等人 [14]提出了一种数据高效的离策略 (off-policy)策略评估方法, 用

重要性采样提升评估准确性和效率. Gu等人 [28]在 Q-Prop中结合离策略价值估计, 通过重要性采样减小方差, 提高

样本效率. Espeholt等人 [29]在 IMPALA中采用重要性加权修正不同策略采样的数据, 实现大规模分布式深度强化

学习. Gruslys等人 [30]在 Reactor中使用快速且样本高效的 Actor-Critic算法, 结合重要性采样实现高效学习. 基于

重要性采样的方法虽然能识别样本间的策略分布差异, 降低这部分差异造成的策略梯度估值方差, 但它不能捕获

样本中环境机制的随机性, 无法解决因此产生的高方差问题.
另一种常见的方法是改进梯度更新过程. Schulman等人 [15]提出了信任域策略优化 (TRPO)算法, 通过约束策

略更新的步长, 在保证单调提升的同时, 有效地控制了策略变化的幅度, 提高了训练的稳定性. Schulman等人 [19]进

一步提出了近端策略优化 (PPO)算法, 通过引入替代目标函数和策略裁剪技术, 在 TRPO的基础上简化了优化过

程, 使得算法更易于实现和调参. Papini等人 [12]提出了随机方差减少策略梯度 (SVRPG)算法, 通过引入方差减少

技术, 如 SVRG和 SAGA, 来降低策略梯度估计的方差, 提高了训练效率和稳定性. Liu等人 [16]对策略梯度和自然

策略梯度方法进行了改进分析, 提出了新的方差减少技术, 并给出了收敛性保证, 进一步提高了这些方法的理论基

础和实践效果. Xu等人 [31]对 SVRPG算法进行了改进分析, 提供了更紧致的收敛界, 展示了该算法在方差减少和

收敛速度上的优势. 基于改进梯度更新过程的方法通过限制策略更新幅度或改进梯度估计来减少方差, 未能充分

利用环境的动态特性.
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减基线法也是常见的降低方差的技术. Schulman等人 [32]提出了广义优势估计 (GAE), 引入状态价值函数的自

举, 通过 TD(λ)误差来估计优势函数, 从而在降低方差的同时保持较低的偏差. Wu等人 [33]提出利用策略的结构性

信息构建基于动作的基线函数, 针对每个因素计算独立的基线, 排除其他因素的影响, 从而减少方差. Mao等人 [34]

提出了基于元学习的方法学习一个输入依赖基线, 它综合考虑状态和整个后续输入序列, 可以排除外部产生的随

机扰动, 从而更准确地估计一个动作的质量, 降低方差. Guo等人 [17]提出了一种信息论方法, 通过学习与未来状态

和奖励的互信息最大且与当前动作无关的后见向量 (hindsight vector), 然后再获得后见价值函数, 从而持续降低策

略梯度方法的奖励方差, 得到稳定的训练效果. 上述基线或因没考虑到未观测随机信息, 而无法消除未观测信息对

动作优势估计值的影响; 或只是直观地利用了互信息, 没把握动态环境的数据生成机制, 面对不同环境机制时的效

果较差.
不同于现有降低策略梯度方差的方法, 本文从环境数据生成机制的角度出发, 利用因果模型描述动态环境中

不变的因果关系, 并引入隐变量刻画未观测随机信息. 基于因果编解码框架推断隐变量, 结合因果价值函数充分考

虑未观测随机信息的影响, 从而提高动作优势函数预估的准确性, 有效降低策略梯度方差.

 2   基础知识

本文所提方法主要关于深度强化学习、策略梯度方法和结构因果模型, 下面就相关概念和基本知识予以介绍.

 2.1   深度强化学习

⟨S ,A,P,R,γ⟩ S st A

at P P (st+1|st,at) st at

st+1 R R (st,at, st+1) γ

τ = {s0,a0,r0, s1,a1,r1, . . . , sT ,aT ,rT , sT+1}

深度强化学习 (deep reinforcement learning, DRL)是一种机器学习方法, 通过与环境的交互来学习策略, 以最

大化累计奖励. 与监督学习不同, 深度强化学习不需要预先标注的数据, 而是通过试错和反馈机制来进行学习. 深
度强化学习中的主要组成部分包括智能体 (Agent)、环境 (Environment)、动作 (Action)、状态 (State) 和奖励

(Reward). 为了系统化地描述深度强化学习问题, 通常使用马尔可夫决策过程 (Markov decision process, MDP), 如
图 1(b)所示. MDP是一个包含五元组的数学模型  .   是状态空间,   表示在时刻 t 的状态.   是动作空

间,   表示智能体在时刻 t 的动作.   是状态转移概率,   表示在状态   执行动作   后转移到下一时刻状

态   的概率.   是奖励函数,   表示在状态转移过程对应的奖励.   是折扣因子, 用于衡量未来奖励和当

前奖励的相对重要性. 在 MDP 中, 智能体在深度强化学习过程中收集的轨迹为所有时刻的状态、动作和奖励的

集合, 记作  .

 2.2   策略梯度方法

τ = {s0,a0,r0, s1,a1,r1, . . . , sT ,aT ,rT , sT+1} G (τ) =
∑T

t=0
γtrt

π θa J(θa) J(θa) =

Eτ∼πθa [G(τ)] πθa ∇θa J(θa) = Eτ∼πθa
[
G(τ)∇θa log p

(
τ|πθa

)]
V πθa

策略梯度方法是一类直接优化策略的深度强化学习算法, 通过最大化策略的期望回报来学习最佳策略. 如果已

知智能体在深度强化学习过程中收集的轨迹为  , 该轨迹的回报  .

假设策略   由参数   参数化, 其性能指标表示为  . 策略梯度方法的目标是最大化策略的期望回报, 则 

. 策略   性能指标的梯度为  . 为了降低策略梯度的方差, 一般引入

基线价值函数  , 使策略   性能指标的梯度为: 

∇θa J(θa) = Eτ∼πθa
[
(G(τ)−V)∇θa log p

(
τ|πθa

)]
(1)

 2.3   结构因果模型

M ⟨U,X,F,P(u)⟩ U {U1,U2, . . . ,Un}
X {X1,X2, . . . ,Xn}

Xi

PAi F { f1, f2, . . . , fn} fi PAi∪{Ui}
{Yi} Yi := fi(PAi,Ui) Ui ∈ U PAi ⊆ X\Xi i = 1,2, . . . ,n

结构因果模型 (structural causal model, SCM)[35]提供了一种描述系统中变量之间因果关系结构的框架. 通过明

确定义变量之间的因果影响, 结构因果模型从因果机制层面总结了数据的生成过程, 为因果推断和分析提供了坚

实的基础. 结构因果模型   是一个四元组  .   是一组外生变量的集合  , 外生变量是系

统外部的因素或背景条件, 由模型外部因素决定.   是一组内生变量的集合  , 内生变量是模型内部需

要解释或预测的变量, 由其他变量 (其他内生变量和外生变量)决定; 在内生变量   的父节点集合中, 由其他内生

变量组成的子集被表示为  .   是一组函数的集合  , 每个函数   是其他变量集合   到内生变

量子集   的映射. 函数和各个对应的变量集构成结构方程  , 其中  ,  ,  .
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结构方程明确了因果方向, 刻画了系统内部的因果关系. SCM的一个关键优势在于其模块化和可解释性. 通过将

复杂系统分解为相互关联的子模块. 这种模块化使得模型更容易构建、理解和维护, 同时也有助于识别关键的因

果关系和潜在的干预目标. 通过明确表示变量之间的因果关系, SCM使研究者能够提出和回答关于系统行为的问

题, 识别关键的因果机制, 并估计因果效应.

 3   隐变量因果模型和因果价值函数

 3.1   隐变量因果模型

ht t ht st+1

t

通过上述分析可知, 策略梯度算法的高方差问题主要源于环境中的外部扰动. 这些扰动通常表现为未观测的

随机信息, 且可能影响下一时刻可观测的状态. 这使得 t 时刻的状态除了依赖 t–1时刻可观测的状态和动作外, 还
受到 t–1 时刻的未观测的随机扰动的影响, 从而使策略梯度估计的方差增大. 以 Gym 的 Lunar Lander 环境为例,
风就是一个典型的未观测随机信息. 其可能在智能体做出决策动作后, 扰动下一时刻返回的可观测状态信息. 在实

际环境中, 类似的未观测随机信息普遍存在, 例如机器人运行过程由于接触材料变化而引起的摩擦力变化或运输

车因为货物装卸而产生的不同负重等. 因此, 本文在传统深度强化学习中的马尔可夫决策过程五元组基础上, 引入

隐变量   刻画   时刻的动态环境的未观测随机信息, 并假设存在隐变量   指向下一时刻可观测状态信息   的因

果边. 其因果关系如图 1(c)所示. 因此, 在时刻   时, 含有隐变量的结构因果模型可以形式化为:  
at := fa(st)

st := fs (st−1,at−1,ht−1)

rt := fr (st,at, st+1)

(2)

 3.2   因果价值函数

st rt

基于上述因果模型, 状态转移不仅取决于可观察状态信息和采取的动作, 还受到未观测随机信息的影响. 而奖

励函数会结合当前时刻的状态、动作和下一时刻的状态返回环境的反馈, 这也意味着未观测随机信息还可能影响

奖励信息. 在给定时刻 t 下的状态为   时, 内生变量   的结构方程可以展开为: 

rt = fr (st,at, st+1) = fr (st,at, fs (st,at,ht)) = fr (st, fa (st) , fs (st, fa (st) ,ht)) (3)

rt (st,ht)

st+1 rt+1 (st,ht,ht+1)

可以得知与内生变量   存在直接或间接因果关系的外生变量集合为  . 相同地, 在给定时刻 t+1 下的状态为

, 通过结构因果模型的分析, 可以寻找与内生变量   存在直接或间接因果关系的外生变量集合为  .

st Gt =
∑T

t′=t
γt′−trt′

Gt (st,ht,ht+1, . . . ,hT )

在给定时刻 t 下的状态为   时, 从时刻 t 开始累计, 到轨迹最终结束的时刻 T 的轨迹回报为  ,

所以与   存在直接或间接因果关系的外生变量集合为  . 为了方便表示, 引入从时刻 t 开始到轨迹

结束的所有隐变量序列的定义: 

h+t ≜ (ht,ht+1, . . . ,hT ) (4)

V Gt V (st,h+t )因为价值函数   往往就是对轨迹回报   的期望值的拟合, 所以   可以使用   作为网络输入进行拟合. 故
提出因果价值函数 (CVF)的定义如下所示: 

Vcausal(st,h+t ) ≜ Eτ∼πθa
[
Gt |st,h+t

]
(5)

V s(st) ≜ Eτ∼πθa [Gt |st] Vt

At =Gt −Vt Gt h+t
h+t

h+t
Vt h+t

Gt

根据公式 (3) 可知, 奖励函数会受到隐变量的干扰. 当采用状态价值函数   作为基线   时,

动作优势函数   的估计值会受到隐变量序列的影响. 这是因为轨迹回报   受隐变量序列   的影响, 而状

态价值函数并未考虑隐变量序列   的影响, 导致动作优势估计存在较大方差. 在样本充足且隐变量均值为 0的情

况下, 对动作优势估计值多次求平均可实现类似无偏的效果, 但会降低数据样本效率. 而且即使通过平均实现了动

作优势的无偏估计, 策略梯度在优化过程中仍会受到隐变量序列   的影响, 导致梯度估计的方差过大并影响收敛

速度和收敛时累计奖励的性能. 因此, 本文采用因果价值函数作为基线  , 以此充分考虑隐变量序列   对轨迹回

报   的影响, 提高动作优势预估的准确性并降低策略梯度的方差. 
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At =Gt −Vcausal(st,h+t ) (6)

定理 1. 假设数据的生成机制满足公式 (2), 那么基于因果价值函数的策略梯度估计是无偏的.

证明: 引入因果价值函数作为基线函数后, 策略梯度可以表示为: 

∇θa J(θa) = Eτ∼πθa
[(

G(τ)−Vcausal
)
∇θa log p

(
τ|πθa

)]
= Es0:T+1 ,a0:T ,r0:T

 T∑
t=0

(
Gt −Vcausal (st,h+t

))∇θa logπθa (at |st)


= Es0:T+1 ,a0:T ,r0:T

 T∑
t=0

Gt∇θa logπθa (at |st)

−Es0:T+1 ,a0:T

 T∑
t=0

Vcausal (st,h+t
)∇θa logπθa (at |st)

 (7)

Vcausal (st,h+t
)

st和h+t at

T∑
t=0

Vcausal (st,h+t
)∇θa logπθa (at |st)

s0:T h0:T a0:T sT+1

根据环境的因果模型展开,   中   都不是关于   的函数, 且   涉及

的  、  和   都不依赖于  , 可得: 

Es0:T+1 ,a0:T

 T∑
t=0

Vcausal (st,h+t
)∇θa logπθa (at |st)

 = Es0:T ,a0:T

 T∑
t=0

Vcausal (st,h+t
)∇θa logπθa (at |st)


=

T∑
t=0

Est ,at

[
Vcausal (st,h+t

)∇θa logπθa (at |st)
]

=

T∑
t=0

Est

{
Vcausal (st,h+t

)∗Eat

[∇θa logπθa (at |st)
]}

=

T∑
t=0

Est

[
Vcausal (st,h+t

)∗0
]

= 0 (8)

∇θa J(θa) = Es0:T+1 ,a0:T ,r0:T

 T∑
t=0

Gt∇θa logπθa (at |st)

综合公式 (7)和 (8), 易证  , 故定理 1成立.

定理 2. 相对于以状态价值函数作为基线函数, 基于因果价值函数的策略梯度算法在动作优势估计值上的方

差更小.

证明: 引入因果价值函数作为基线函数后, 策略梯度估值中动作优势估计值的方差为: 

V
[
Gt −Vcausal (st,h+t

)]
= E

⟨
V

{[
Gt −Vcausal (st,h+t

)] ∣∣∣st,h+t
}⟩
+V

⟨
E
{[

Gt −Vcausal (st,h+t
)] ∣∣∣st,h+t

}⟩
= E

[
V

(
Gt

∣∣∣st,h+t
)]
−E

{
V

[
Vcausal (st,h+t

) ∣∣∣st,h+t
]}
+V

{
E
(
Gt

∣∣∣st,h+t
)
−E

[
Vcausal (st,h+t

) ∣∣∣st,h+t
]}

= E
[
V

(
Gt

∣∣∣st,h+t
)]
+V

{
E
(
Gt

∣∣∣st,h+t
)
−E

[
E
(
Gt |st,h+t

) ∣∣∣st,h+t
]}

= E
[
V

(
Gt

∣∣∣st,h+t
)]
+V

{
E
(
Gt

∣∣∣st,h+t
)
−E (Gt |st,h+t

)}
= E

[
V

(
Gt

∣∣∣st,h+t
)]

(9)

V
[
f (x) |x] = E⟨{ f (x)−E [ f (x)|x]}2⟩ = E

{[
f (x)− f (x)

]2
}
= 0 E

{
V

[
Vcausal (st,h+t

) ∣∣∣st,h+t
]}
= 0其中, 由  , 可知  . 结合公式 (5)给

出的因果价值函数定义, 可推导出公式 (9)第 3个等式.

使用状态价值函数作为基线函数时, 策略梯度估值中动作优势估计值的方差为: 

V [Gt −V s (st)] = E [V (Gt |st )] = E
{
E
[
V

(
Gt

∣∣∣st,h+t
)]
+V

[
E
(
Gt

∣∣∣st,h+t
)]}

= E
[
V

(
Gt

∣∣∣st,h+t
)]
+E

{
V

[
E
(
Gt

∣∣∣st,h+t
)]}

⩾ E
[
V

(
Gt

∣∣∣st,h+t
)]
= V

[
Gt −Vcausal (st,h+t

)]
(10)

V (y) = E
[
V (y|x)

]
+V

[
E (y|x)

]
其中, 利用公式 (9)的证明逻辑可以证明公式 (10)第 1个等式, 利用   可以证明公式 (10)

第 2个等式.

V [Gt −V s (st)] ⩾ V
[
Gt −Vcausal (st,h+t

)]
综合公式 (9)和 (10), 易证得  , 故定理 2成立.
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 4   算法实现

 4.1   学习隐变量因果模型

本文受因果模型和变分推断的启发, 提出了基于隐变量因果模型的因果编解码框架 (如图 2所示). 该框架通

过引入隐变量刻画未观测随机信息, 旨在实现隐变量因果模型的学习和隐变量的推断. 框架主要包含因果编码网

络 (causal encoder)和因果解码网络 (causal decoder)两个核心组件. 因果编码网络基于变分推断方法, 利用观测信

息推断隐变量的变分后验分布. 具体而言, 编码网络首先推断后验分布的参数 (如均值和方差), 随后在假设隐变量

服从先验分布的条件下, 采用重参数化技巧实现端到端的有效优化. 这一设计既保证了优化效率, 又保持了因果模

型在表示和推理因果关系方面的能力. 因果解码网络则基于推断的隐变量, 结合当前时刻的可观测状态与动作信

息, 对下一时刻的可观测状态进行重构预测, 从而拟合状态转移的数据生成机制. 通过对比重构状态与真实观测状

态之间的偏差, 可有效评估因果模型的拟合性能. 最终, 该框架通过编码和解码网络的协同作用, 实现了对隐变量

因果机制的有效拟合和轨迹中隐变量信息的准确推断.

 
 

st

st+1 st+1

at

st

ht

at

μt

σt

εt

Causal encoder Causal decoder

(0, 1)

ˆ

图 2　基于结构因果模型的因果编解码框架
 

φ ψ

在该框架下, 首先将轨迹中所有时刻信息的联合概率建模为一个边缘对数似然. 这个边缘对数似然是通过将

每个时刻的隐变量边缘化而得到的. 然后, 利用因果模型内在的因果依赖关系, 结合变分推断技术, 将这个边缘对

数似然进一步拆解, 以便于计算和优化. 通过这种方式, 原本难以求解的后验概率问题被转化为优化变分下界

(evidence lower bound, ELBO)的问题. 设引入的因果编码网络参数为  , 因果解码网络为  , 则轨迹中所有时刻信

息的对数联合概率为: 

log p
(
s0,a0,r0, s1,a1,r1, . . . , sT ,aT,rT , sT+1

)
=

T∑
t=0

DKL
(
qφ (ht |st,at, st+1) ∥ p(ht |st,at, st+1)

)
+ELBO (11)

其中, 等式右侧第 1项表示近似后验分布 (由因果编码网络推断)和真实后验分布的 Kullback-Leibler散度 (KL散

度)在所有时刻上的总和, 反映轨迹中因果编码网络在拟合真实后验分布时的误差. 事实上, KL散度是非负的. 又

由于近似后验分布与真实后验分布在实际应用中几乎不可能完全相同, 这一项恒大于 0. 等式右侧第 2 项为

ELBO. 通过最大化 ELBO, 使近似后验分布更好地拟合真实后验分布, 即提高因果编码网络对隐变量的推断能力.

ELBO 通过因果模型内在的因果依赖关系, 进一步展开: 

ELBO = log p (s0)+
T∑

t=0

Eht∼qφ(ht |st ,at ,st+1) log pψ (st+1|st,at,ht)−
T∑

t=0

DKL
(
qφ (ht |st,at, st+1) ∥ p(ht)

)
+

T∑
t=0

logπθa (at |st)+
T∑

t=0

log pR(rt |st,at, st+1) (12)

p (s0) πθa (at |st) pR(rt |st,at, st+1)因为   为样本给定的固定数值、  由动作网络决定、  由环境奖励机制决定, 都与因

果编码网络或因果解码网络无关, 最大化 ELBO 调整为: 
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max(ELBO) =min(−ELBO)

=min

 T∑
t=0

DKL
(
qφ (ht |st,at, st+1) ∥ p(ht)

)− T∑
t=0

Eht∼qφ(ht |st ,at ,st+1) log pψ (st+1|st,at,ht)


=

T∑
t=0

min
[
DKL

(
qφ (ht |st,at, st+1) ∥ p(ht)

)−Eht∼qφ(ht |st ,at ,st+1) log pψ (st+1|st,at,ht)
]

(13)

最大化 ELBO 分成各个时间点内单独控制每一步损失, 则因果模型的损失为: 

Lcausal = DKL
(
qφ (ht |st,at, st+1) ∥ p(ht)

)−Eht∼qφ(ht |st ,at ,st+1) log pψ (st+1|st,at,ht) (14)

ht

pψ (st+1|st,at,ht)

其中, 等式右侧第 1项是近似后验分布 (由因果编码网络推断)和假设先验分布 (一般假设为高斯分布)的 KL散

度. 最小化 KL 散度项可以促使因果编码网络学习的隐变量分布尽可能接近先验分布, 同时起到正则化优化问

题的作用, 保持参数推断的不确定性. 等式右侧第 2项是在近似后验分布下对隐藏变量   进行采样, 并计算因果

编码网络中   的对数概率负期望值. 最小化对数概率负期望项, 可以使因果编码网络和因果解码网

络协同学习, 在给定隐变量的情况下, 使重构数据尽可能接近真实的可观测状态信息, 保持模型对数据的解释能

力. 通过平衡这两部分, 保证了变分推断和因果模型拟合的有效性, 进而确保算法可推断因果价值函数所需要的

隐变量.
p(ht) =N (ht;0, I) (

s( j)
t ,a

( j)
t , s

( j)
t+1

)
µ( j)

t σ( j)
t J

假设隐变量的先验分布服从各向同性多元高斯分布, 即  . 同时, 也假设真实后验分布也满足

对角协方差矩阵的多元高斯分布. 通过向因果编码网络输入采样批次样本对应的   信息, 获得对应情况

的后验分布的参数, 如均值为  、标准差为  . 相应地, 基于数量为   的采样批次样本, 因果编码网络的输出通

过重参数化技巧整理为近似后验分布: 

qφ
(
h( j)

t |s( j)
t ,a

( j)
t , s

( j)
t+1

)
=N

(
h( j)

t ;µ( j)
t ,

[
σ( j)

t

]2
I
)

(15)

h( j)
t

h( j)
t = µ

( j)
t +σ

( j)
t ⊙ε( j)

t ε( j)
t N (0,1)

qφ
(
h( j)

t |s( j)
t ,a

( j)
t , s

( j)
t+1

)
p(ht)

在公式 (15)中, 重参数化技巧将隐变量   的采样过程重新表述为一个确定性函数和一个独立的噪声变量的

函数:  . 其中,   是从标准正态分布   中采样的噪声变量. 故因果模型的损失中, 近似后验

分布   和假设先验分布   的 KL散度项整理为:
 

DKL

(
qφ

(
h( j)

t |s( j)
t ,a

( j)
t , s

( j)
t+1

)
∥ p(ht)

)
= −1

2

J∑
j=1

(
1+ log

{[
σ( j)

t

]2
}
−

[
µ( j)

t

]2
−

[
σ( j)

t

]2
)

(16)

d而对于因果解码网络, 直接优化对数概率负期望值在计算上比较复杂. 在已知可观测状态信息维度为  

时, 借助真实后验分布 (已假设为高斯分布)的概率密度函数, 可以如公式 (17)将对数概率负期望项简化为重

构损失项: 

−Eht∼qφ(ht |st ,at ,st+1) log pψ (st+1|st,at,ht) = −Eht∼qφ(ht |st ,at ,st+1) log

 1√
(2π)dσ2d

exp
(
− 1

2σ2

∥∥∥st+1−Fψ (st,at,ht)
∥∥∥2

)
= Eht∼qφ(ht |st ,at ,st+1)

[
d
2

log(2π)+d logσ+
1

2σ2

∥∥∥st+1−Fψ (st,at,ht)
∥∥∥2

]
∝ 1

J

J∑
j=1

∥∥∥∥s( j)
t+1−Fψ

(
s( j)

t ,a
( j)
t ,h

( j)
t

)∥∥∥∥2
(17)

学习隐变量因果模型的过程, 如算法 1所示.

算法 1. 隐变量因果模型学习算法.

β Fφ Fψ

wKL wrecon

输入: 缓存池  , 采样批次样本量 J, 迭代次数 I, 因果编码网络  , 因果解码网络  , 因果模型的 KL 散度项权重

, 因果模型的重构损失项权重  ;
φ ψ h输出: 隐变量因果模型更新后的因果编码网络参数  , 因果解码网络参数  , 隐变量信息  .
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Fφ Fψ1. 初始化  , 
i = 1 : I2. for   do

β
{(

s( j)
t ,a

( j)
t , s

( j)
t+1

)
| j ∈ [1, J]

}
3. 　　从缓冲池   中采样 

j = 1 : J4.　　 for   do

µ( j)
t , σ

( j)
t = Fφ

(
s( j)

t ,a
( j)
t , s

( j)
t+1

)
5. 　　　推断隐变量均值和标准差: 

h( j)
t ∼N

(
µ( j)

t ,
[
σ( j)

t

]2
I
)

6. 　　　重参数化: 

s( j)
t+1 = Fψ

(
s( j)

t ,a
( j)
t ,h

( j)
t

)
7.　　　 重构可观测状态信息: 

8.　　 end for

LKL = −
1
2

J∑
j=1

(
1+ log

{[
σ( j)

t

]2
}
−

[
µ( j)

t

]2
−

[
σ( j)

t

]2
)

9. 　　计算 KL散度项: 

Lrecon =
1
J

J∑
j=1

∥∥∥∥s( j)
t+1−Fψ

(
s( j)

t ,a
( j)
t ,h

( j)
t

)∥∥∥∥2
10. 　  计算重构损失项: 

Lcausal = wKLLKL+wreconLrecon φ ψ11. 　  根据联合损失项  , 更新   和 

12. end for

 4.2   基于隐变量因果模型的策略梯度算法

h+t
Vt

h+t

基于隐变量因果模型的策略梯度算法的网络训练方法如图 3所示. 在因果价值网络判定价值之前, 利用长短

期记忆网络 (long short-term memory, LSTM)处理逆序的变长隐变量序列  , 学出隐变量序列特征. 在时间序列中

距离当前节点越远的隐变量信息对当前节点价值   的影响应该越小, 这样的设计与折扣因子的设计是相似的. 而
LSTM网络处理逆序的变长隐变量序列  , 恰能通过遗忘门将类似的记忆特点表现出来. 结合上述的隐变量序列

特征和可观测状态信息, 计算基于当前因果价值网络对当前时刻预估的价值信息. 通过因果价值网络更为准确地

衡量当前时刻的综合情况, 可以使动作优势估计值不受动态环境中未观测随机信息的干扰, 进而降低策略梯度的

方差. 基于上述描述, 基于隐变量因果模型的策略梯度算法如算法 2所示.

 
 

Vt−1

ht−1 ht+1

 t+1 t+1μt+1 t−1t−1μt−1

at−1st−1 at+1st+1 st+2atst

 ttμt

ht

Vt Vt+1

Criticcvf Criticcvf Criticcvf

LSTM

ActorActorActor

LSTMLSTM…

… …

…

Causal

encoder

Causal

encoder

Causal

encoder

(0,1) (0,1)(0,1)

σσσ

图 3　基于隐变量因果模型的策略梯度算法的网络训练方法示意图
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算法 2. 基于隐变量因果模型的策略梯度算法的网络训练方法.{
τ(0), τ(1), . . . , τ(L)

∣∣∣∣τ(l) =
{
s(l)

0 ,a
(l)
0 ,r

(l)
0 , s

(l)
1 ,a

(l)
1 ,r

(l)
1 , . . . , s

(l)
T ,a

(l)
T ,r

(l)
T , s

(l)
T+1

} }
ρ

γ FθCVF Fθa ωe δ Fφ

φ

输入: L 条完整轨迹  , 强化样本采样比例  , 迭代次数

I, 折扣因子  , 因果价值网络  , 动作网络  , 熵的损失加权  , 裁剪系数  , 因果编码网络  , 已完成训练的因

果编码网络参数  ;

θCVF θa输出: 因果价值网络参数  , 动作网络参数  .

FθCVF Fθa
1. 初始化  , 

l = 1 : L2. for   do
t = 0 : T3.　　 for   do

µ(l)
t , σ

(l)
t = Fφ

(
s(l)

t ,a
(l)
t , s

(l)
t+1

)
4. 　　　　推断隐变量均值和标准差: 

h(l)
t ∼N

(
µ(l)

t ,
[
σ(l)

t

]2
I
)

5. 　　　　重参数化: 

log pa_old(l)
t ,e_old(l)

t = Fθa

(
s(l)

t

)
6. 　　　　计算更新前动作对数概率和熵: 

V_old(l)
t = Fθa

(
s(l)

t ,h
(l)
t
+
)

7. 　　　　计算更新前价值评估: 

G(l)
t =

∑T

t′=t
γt′−tr(l)

t′8. 　　　　计算轨迹回报: 

A(l)
t =G(l)

t −V_old(l)
t9. 　　　　计算动作优势估计值: 

10.　　 end for
11. end for

i = 1 : I12. for   do

l = 1 : L13.　　 for   do
t = 0 : T14.　　　　 for   do

log pa(l)
t e(l)

t log pa(l)
t ,e

(l)
t = Fθa

(
s(l)

t

)
15. 　　　　　　更新动作对数概率   和熵  : 

V (l)
t = Fθa

(
s(l)

t ,h
(l)
t
+
)

16. 　　　　　　更新价值评估: 

17.　　　　 end for
18.　　 end for {

A(ρ)
1 , . . . ,A

(ρ)
K

}
,
{
log pa_old(ρ)

1 , . . . , log pa_old(ρ)
K

}
,
{
log pa(ρ)

1 , . . . , log pa(ρ)
K

}
,
{
e(ρ)

1 , . . . ,

e(ρ)
K

}
,
{
G(ρ)

1 , . . . ,G
(ρ)
K

}
,
{
V (ρ)

1 , . . . ,V (ρ)
K

}19.　 从 L 条完整轨迹的数据中采样:   

  

αk = exp(log pa_old(ρ)
k − log pa(ρ)

k )20. 　　计算新旧策略比率为: 

La = −
1
K

K∑
k=1

{
min

[
αk,clip (αk,1−δ,1+δ)

]
A(ρ)

k +ωee
(ρ)
k

}
21. 　　计算动作网络损失项: 

Lv =
1
K

K∑
k=1

∥∥∥G(ρ)
k −V (ρ)

k

∥∥∥222. 　　计算因果价值网络损失项: 

θa23. 　　根据动作网络损失项, 更新 

θCVF24. 　　根据因果网络损失项, 更新 

25. end for

 5   实验结果与分析

 5.1   实验环境

本文选择使用 OpenAI Gym 平台中的 3个经典环境: Lunar Lander、 Thrower和 Pusher作为实验环境, 如图 4
所示. OpenAI Gym 是一个流行的深度强化学习环境平台, 提供了丰富多样的环境供研究者开展实验, 涵盖了从基
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础控制任务到复杂模拟环境的多种场景.

wind_power = 1.0 turbulence_power = 1.5

Lunar Lander 环境模拟了一艘月球着陆器在二维空间中通过控制其主引擎和侧推器实现平稳着陆的任务. 该
环境具有高维度的观测空间和离散的动作空间, 其奖励函数设计如下: 当着陆器成功着陆时可获得+100 的奖励,
着陆器保持静止状态可获得+10的奖励, 每个着陆腿与地面接触可获得+10的奖励. 此外, 奖励值会随着着陆器与

着陆台之间的距离动态变化, 距离越近奖励越高; 同时着陆器的运动速度也会影响奖励值, 速度越慢奖励越高. 若
发生坠毁则获得−100的惩罚, 且燃料消耗会产生相应的负向奖励. 本文选用的 Lunar Lander环境具有内置的风力

干扰机制. 通过配置   及   参数引入显著的环境动态随机性, 构建基准实验

环境用于评估各算法的性能表现.
 
 

(a) Lunar Lander 环境 (b) Thrower 环境 (c) Pusher 环境

图 4　OpenAI Gym实验环境
 

Thrower 环境是一个基于 MuJoCo 物理引擎的三维任务, 模拟了一台机械臂将物体抛向指定目标区域. 该任务

需要控制机械臂的多个关节, 以生成合适的运动轨迹, 使得物体能够精确地到达目标区域. 环境的奖励函数主要由

物体与目标的欧氏距离的负值构成, 即距离目标越近奖励越高. 本文在 Thrower 环境的目标位置中增加均值为 0,
标准差为 0.01的高斯分布的随机变量, 以引入动态环境的随机性, 使实验环境具备较为明显的动态随机特性.

N (0,0.01)

Pusher 环境同样基于 MuJoCo 物理引擎, 模拟了一台机械臂将物体推向目标位置的任务. Pusher环境具有与

Thrower环境相同的状态空间和动作空间结构, 但其奖励函数由机械臂末端与物体的距离、物体与目标的距离两

部分的负值构成. 本文也向 Pusher 环境的目标状态增加分布为   的动态环境随机信息, 使实验环境存在

较为明显的动态环境随机信息.
通过比较在这些环境下使用 PPO[19]、HVF[17]和 PGVO 的表现, 可以更全面地评估 PGVO的适用性和鲁棒性.

 5.2   参数设置

本文在不同实验环境下, 使用 5个随机种子 (12, 34, 56, 78, 90)对各算法进行对比测试. 在离散环境 Lunar Lander
测试 5 000回合, 连续环境 Thrower和 Pusher测试 20 000回合, 每 100个回合取奖励的平均值作为评估结果.

PGVO的因果编码器 (causal encoder)和因果解码器 (causal decoder)均采用多层感知机 (multilayer perceptron,
MLP)实现. 其中, 因果编码器以动作维度与两倍状态维度之和作为输入, 通过双输出结构分别输出均值和对数方

差, 输出维度均为隐变量维度. 基于该结构, 编码器利用重参数化技巧实现随机采样. 因果解码器以状态维度、动

作维度及隐变量维度之和作为输入, 输出维度与状态维度相同. 动作网络以可观测状态作为输入, 通过MLP输出

动作空间维度的动作值. 价值网络采用双流架构, 包含状态处理和隐变量序列处理两个分支. 其中, 状态处理分支

通过 MLP 提取可观测状态特征, 隐变量序列处理分支利用 LSTM 网络提取隐变量序列特征. 最终将两个分支的

特征拼接, 通过MLP网络输出标量价值估计.
为保证实验的公平性和可比性, 本文统一配置了各算法的网络结构和超参数. PPO的动作网络结构与 PGVO

保持一致, 其价值网络直接以可观测状态作为输入. HVF的后见向量 (hindsight vector)维度与 PGVO的隐变量维

度相同, 其动作网络和价值网络也和 PGVO使用相同的网络架构. 具体超参数配置如后文表 1所示.

 5.3   实验结果

经过第 3.2节探讨, 动态环境中的未观测随机信息会导致策略梯度估计存在较大方差. 这一问题主要表现为:
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其一, 训练过程不稳定, 参数更新方向存在较大波动, 影响策略的收敛速度; 其二, 过大的方差可能使策略更新偏离

最优方向, 导致算法无法收敛至理想性能. 针对环境随机性引起的策略梯度高方差问题, 本文重点关注以下两个性

能指标: 策略的累计奖励达到目标性能阈值所需训练回合数和策略收敛后的累计奖励. 对于目标性能阈值的设定,
Lunar Lander环境已明确规定累计奖励达到 200即表示任务完成, 因此直接采用该值作为阈值. 由于 Thrower和
Pusher环境未设定明确的任务完成标准, 本文将 PPO算法收敛后的平均奖励值向下取整至最近的 5的倍数, 即分

别以−40和−50作为这两个环境的目标性能阈值.
 
 

表 1　基于隐变量因果模型的策略梯度算法超参数
 

超参数 取值 参数描述

β 10 000 因果编解码框架的缓存池容量

J 128 因果编解码框架单轮优化网络批次采样数

ρ 0.8 强化样本采样比例

wKL 0.7 因果编解码框架的KL散度项权重

wrecon 0.3 因果编解码框架的重构损失项权重

we 0.01 策略的熵权重

γ 0.99 强化折扣因子

δ 0.1 近端策略裁剪系数

lrcausal 0.000 3 因果编解码框架的学习率

lra 0.000 3 动作网络的学习率

lrv 0.000 05 因果价值网络的学习率

dh 4 隐变量的信息维度

ds 256 价值网络状态处理分支的可观测状态特征的维度

do 64 价值网络隐变量序列处理分支的隐变量序列特征的维度
 

表 2和图 5分别展示了 PPO、HVF和 PGVO这 3种算法在不同环境下的性能指标结果. 表 2记录了累计奖

励达到目标性能阈值所需训练回合数、累计奖励均值 (±标准差)和累计奖励中值, 其中性能优势指标以粗体标注.
对于未能在规定回合数内达到目标性能阈值的算法, 表 2中标记为“×”. 图 5用虚线标识达标回合数并在其与累积

奖励曲线的交点处标注“(达标回合数, 达标时累计奖励)”, 未达标算法则不显示虚线.
 
 

表 2　OpenAI Gym实验不同算法的最终性能表现
 

性能指标

Lunar Lander
wind_power=1 h ∼N (0,0.01)

Thrower
  h ∼N (0,0.01)

Pusher
 

PPO HVF PGVO PPO HVF PGVO PPO HVF PGVO
累计奖励达到目标性能阈值所需训练回合数 4 098 × 1 555 6 523 489 496 11 503 6 459 5 564

累计奖励均值
(±标准差)

197.69
(±13.65)

57.39
(±129.21)

238.89
(±25.78)

−39.11
(±0.98)

−34.47
(±1.65)

−30.91
(±0.91)

−46.88
(±2.21)

−47.88
(±5.01)

−42.94
(±1.74)

累计奖励中值 201.37 9.35 247.28 −38.76 −34.36 −30.90 −47.21 −49.39 −42.63
 

在 Lunar Lander环境中, PGVO达到目标性能阈值所需的训练回合数从 PPO的 4 098回合减少至 1 555回合

(减少 62.05%). 实验表明, 训练完成时 PGVO在累计奖励的均值和中值方面均显著优于对比算法, 具体而言, 均值

较 PPO 提升 41.2 (提升 20.84%), 中值较 PPO 提升 45.91 (提升 22.8%). 值得注意的是, 尽管 PPO 的标准差较低,
但 PGVO在最大方差情况下的性能仍优于 PPO的最佳表现. 在价值网络损失方面, PGVO呈现出最为显著的前期

下降趋势, 这从侧面验证了其能以最少训练回合数达到目标性能阈值的合理性. 相比之下, HVF 虽然价值网络损

失下降迅速, 但在经过 5 000回合训练后累计奖励仍未达到 200点的目标阈值. 深入分析表明, 这可能源于 HVF未

能有效捕捉动态环境的因果结构, 在还原额外信息时过度依赖奖励信息, 导致价值网络过拟合. 此外, 作为降低策

略梯度方差的算法, PGVO在网络优化时间上明显优于 HVF.
在 Thrower 环境中, PGVO 达到目标性能阈值所需的训练回合数从 PPO 的 6 523 回合显著降低至 496 回合
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(减少 92.4%). 实验数据表明, 训练结束时 PGVO 的累计奖励均值较 PPO 提升 8.2 (增长 20.97%), 较 HVF 提升

3.56 (增长 10.33%); 中值较 PPO提升 7.86 (增长 20.28%), 较 HVF提升 3.46 (增长 10.07%). 需要指出的是, HVF虽

在达到阈值的回合数上略优于 PGVO (减少 1.41%), 但其最终累计奖励表现不及 PGVO (降低 11.5%). 通过价值网

络收敛特性分析, PGVO较 PPO表现出更快的下降速度, 较 HVF表现出更小的稳态振荡. 同时, 网络优化时间的

对比结果进一步验证了 PGVO的优越性.
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图 5　OpenAI Gym训练过程中累计奖励、网络优化时间和价值损失的可视化曲线
 

在 Pusher 环境中, PGVO 达到目标性能阈值所需的训练回合数为 5 564 回合, 相较于 PPO 的 11 503 回合和

HVF 的 6 459 回合分别减少 51.6% 和 13.86%. 实验结果表明, 训练完成时 PGVO 的累计奖励均值较 PPO 提升

3.94 (增长 8.4%), 较 HVF 提升 4.94 (增长 10.32%); 中值较 PPO 提升 4.58 (增长 9.7%), 较 HVF 提升 6.76 (增长

13.69%). 通过价值网络损失分析可知, PGVO不仅具有比 PPO更快的收敛速度, 且在稳定后较 HVF呈现更小的

方差. 此外, 在网络优化时间方面, PGVO相较 HVF也具有一定优势.
通过对 3个环境的实验分析可知, PGVO在训练效率、性能稳定性和优化效率等方面均表现出明显优势. 这

主要得益于 PGVO能够通过隐变量因果模型有效刻画动态环境中的数据生成机制, 以此推断未观测随机信息, 进
而降低策略梯度优化的方差, 加速策略梯度算法收敛并提升其累计奖励表现.
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 5.4   消融实验

为了评估本文方法的稳定性和有效性, 基于上述实验, 在 Lunar Lander环境和 Thrower环境做了未观测随机

信息消融实验, 测试了算法面向不同强度的动态环境随机信息的性能.
如图 6所示, 在 Lunar Lander环境中, 面对不同强度的动态环境随机环境信息的影响, PGVO表现出稳定的优

越性能, 是唯一一个在所有不同强度风力影响下能在 5 000回合内达到目标性能阈值的算法. 实验观察到随着风力

增大, PGVO和 PPO需要更多回合进行训练, 这符合客观规律. 在价值网络损失方面, HVF始终存在过拟合现象,
而 PGVO的价值网络损失在训练前期表现出比 PPO更快的下降速度, 有助于强化算法性能的快速收敛.
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图 6　Lunar Lander环境随机信息消融的性能曲线
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图 6　Lunar Lander环境随机信息消融的性能曲线 (续)
 

如图 7 所示, 在 Thrower 环境中, 面对不同强度的动态环境随机信息影响, PGVO 展现出最稳定的优化性能,
且最终收敛的累计奖励最优. 虽然其达到目标性能阈值所需的训练回合并非在所有情况下最少, 但从整体来看,
当 HVF具有优势时差距并不显著; 而在强干扰环境中, PGVO较 HVF减少了 55.6%的训练回合. 在价值网络损失

方面, PGVO和 HVF均比 PPO表现出更快的损失下降速度. 在保持较低价值网络损失值的同时, PGVO在抖动控

制上明显优于 HVF. 总结以上随机信息消融实验, 可以证明本算法面向不同强度的动态环境随机信息, 都能表现

出较为稳定的性能, 加快深度强化学习的收敛速度和提高收敛时的累计奖励.
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(a) 累计奖励: 无 h (b) 价值网络损失: 无 h

(c) 累计奖励: h~(0,0.05) (d) 价值网络损失: h~(0,0.05)
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图 7　Thrower环境随机信息消融的性能曲线
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(e) 累计奖励: h~(0,0.1) (f) 价值网络损失: h~(0,0.1)

(g) 累计奖励: h~(0,1) (h) 价值网络损失: h~(0,1)
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图 7　Thrower环境随机信息消融的性能曲线 (续)

 5.5   参数敏感实验

N (0,0.01) β

CVF_buf_ {β}_ {J} dh

hdim_ {dh} wrecon wKL

CVF_loss_ {wreccon}_ {wKL} δ CVF_ppoclip_ {δ}
γ CVF_gamma_ {γ}

为了测试算法受模型参数的影响状况, 本节测试了不同参数权重对性能带来的影响. 在动态环境随机信息由

高斯分布   产生的 Thrower 环境中, 图 8(a)、(b) 测试参数为因果模型的缓存池容量  、 因果模型单轮

优化网络批次采样数 J ,  简写成“   ”; 图 8(c)、(d) 测试参数为隐变量的信息维度   ,  简写成

“   ”; 图 8(e)、(f)测试参数为因果模型的重构损失项权重   和因果模型的 KL散度项权重  , 简写为

“   ”; 图 8(g)、(h)测试参数为近端策略裁剪系数  , 简写为“   ”; 图 8(i)、(j)
测试参数为强化折扣因子  , 简写为“   ”.
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(a) 累计奖励: 因果模型 buffer 采样容量组合对比 (b) 价值网络损失: 因果模型 buffer 采样容量组合对比
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图 8　Thrower环境噪声消融的性能曲线
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(c) 累计奖励:还原隐变量的信息维度对比 (d) 价值网络损失:还原隐变量的信息维度对比

(e) 累计奖励:重构损失项和 KL 损失项权重对比
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(f) 价值网络损失:重构损失项和 KL 损失项权重对比

(g) 累计奖励:近端策略裁剪系数对比 (h) 价值网络损失:近端策略裁剪系数对比

(i) 累计奖励:折扣因子对比 (j) 价值网络损失:折扣因子对比
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图 8　Thrower环境噪声消融的性能曲线 (续)
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总结参数影响实验, 如图 8所示可以发现本算法在合理的超参设置范围内, 都能表现出较为稳定的良好性能.
更多需要关注的是经典强化部分的超参设置, 如折扣因子这类的超参设置. 在折扣因子的超参设置上, 使用较高值

的折扣因子表现会更优秀, 如 1、0.99.

 6   总　结

本文针对动态环境中存在随机信息的情况, 导致现有策略梯度方法存在的高方差问题, 从隐因果模型的视角

提出了一种策略梯度方差优化方法 (PGVO), 该方法通过引入显变量和隐变量分别刻画可观测状态信息和动态环

境随机信息, 分析并构建隐变量因果模型, 然后根据该模型提出因果价值函数. 该价值函数估计考虑了环境随机信

息带来的干扰, 以其为基线计算动作优势估计值, 可有效降低动态环境随机信息对策略梯度算法表现性能的影响.
上述步骤的求解利用因果编解码框架推断动态环境随机信息, 并结合长短期记忆网络处理变长的动态环境随机信

息, 借助因果价值函数结合可观测状态信息进行价值函数估计. 实验结果表明, 本文方法在不同随机种子和不同强

度的动态环境随机信息下表现出卓越的性能, 显著提升了策略梯度算法的收敛速度和稳定性. 未来的工作将考虑

非稳态等更复杂场景所带来的挑战, 进一步提高策略梯度方法的适用性同时优化方差.
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