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Abstract: The rapid development of generative technologies has revealed their potential for real-world applications. The core objective of
pose-guided person image and video generation is to transform a person from inputs into a specified pose while maintaining a high level
of appearance consistency. This technology can be widely applied in various fields such as virtual try-on and fashion, advertising video
generation and editing, and multimodal content creation, driving advancements in user experience and technological innovation. However,
despite significant progress, the technology still faces multiple challenges, including effective extraction and rearrangement of appearance
information during pose transfer, generation of unseen information, consistency preservation, and efficient model training and deployment.
Based on the existing challenges, this study provides a detailed analysis of the strategies employed by current mainstream pose-guided

generation methods to address these issues, discussing their feasibility and limitations in practical applications. Moreover, it explores the
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commonly used generative models and pose representation methods in pose-guided generation. It also reviews the datasets, their sizes,
characteristics, and evaluation benchmarks used in this field. Furthermore, this study discusses the applications of this technology in virtual
try-on, video generation and editing, and multimodal content generation. It highlights the remaining challenges, such as the retention of
personalized information, generation in complex scenes, and model efficiency and real-time performance. Finally, this study discusses
potential future development trends of pose-guided generation technology, aiming to provide researchers with a systematic summary and
reference to promote its application and innovation across industries.

Key words: pose-guided generation; person image generation; generative adversarial network (GAN); diffusion model; controllable generation

BEE TF BN BT 2RI FE 2 ST R Rl R R, BT AE BFH AR (pose-guided person image and
video generation) &7 N N T8 BE A I 5 EHF L7 19). Wl 1 TR, 1AL 5518 5 7R 25 @ AW AM L (appearance)
FNIESS (pose) HIHIN A T AT, AYIRIAMULE S H—ik 4 BB IR, Tda & B NDEAS I B — 4 8 A
RERFHERR, Hizo B2 BH A AP #oa1e @ 24, RIS R AN RAE 75 DAOR B . i R i 4%
LN B3 IR R AUUARRAE, FRAT A5 A= piad 20 A MR BRAL A, 3 5 T3 1 FH 2 A B AN HE BN 15 R A1 B
HEREZX.

LEHR A B
K1 RSN E UL S

K FARARAE G R Uk MR Se S A7l b Ay B U, SRR M s o P A RO A S B
TR RIE S 2 AR VR OR T A ). AR I SR AR AT b, AT N A B AR AT DA 0 R L R,
i, SGBRBT SR AIUTIR IR TERT v FEL RS T, 8 2542 ) AR BRBR A 4978 2 3 BRI ZE A W5 IS 0L T, i kg 0Lk
AP B A O 2F AR R RS S (K BOR 7 £E 7 5 Py 25 Az e, it R BT AR P 004 A @ i 1 23 AR
T 56 BN AL A BRI HA SRR, SR BFERICR; BbAh, L3P & B R A X — R, dlid ke 44
SRILSE (AR) L3, 3850 FH P A4 A gt SRk U1,

BRI A AN 2 B, B TF UL A5k & 28 A A A 5 i v B R (R85 Ry Sl 2 A x40 9 2%
(generative adversarial network, GAN)! 2RIy BiUi A 125 Az pl SR 13 M7 30k 1 Jle T A 45 48 25 A FRAT: 25 ZE R B 28R
BB TBIAL G T SRR, I B i R A RS R LS. AR NS BT I £ 08 3 ZR i) 7 0B AR T T AR R
UG &, R = 5 A PR LA, B AR R . BRI A BE. T BUR BLE il K 5 7R Sk A
A AR, A TR A 2 M 1) A BOTLA, A3 5 PR A 0 T DA S ks i i 4, AT i — 2B 4 T AR AT B
Sk, S5 UL, B T & AR A G THAT 3D @A R R, A U R A BRI TE 4P T F AR B AR IR
I Eh1E, RS R R 1) = 4 S (ML SR ST N, X — PR B A I N H S = A ERR TS
BUG A RL, T4 R BIARA e SE BRI SR B0 S A5 40, MK+ & 7 M 5.

SR, SO — U IR T R R, AR AN A AT SR THI I 1 22 BBk 70, Wl 7E 56 il 22 AR I 48
AITREAESS AE B0 T IR B SRR S I F ORI SN I e B — S — AN SRR 1) L. G R AE AR R AR AR
B, & ZEORFET A . ARW . SR S5 AP R IE 1K — S0Pk, B e 7E RS FR o R LA AR R FE
WK, R A A AT 4538 8 75 B A AT 2 37 55 v (VD R R AR T L8 40, G {00 A RO 4 IRV — 501 ) A WK
A TR LG ER R AP IAE B, 2 — TR B, Se A, A 8 SRS ) — SOk e R, RO G el B R A AR il A
TREE N BE NG P42 . 3 SRR e AV R B (7] — S50 2 B A AT AR FHR 1 — DR R X Sk ok e e T
PETHAE BT . 3RS 3 50 K P A % O E
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AT (R 4538 SR BB AR N A A BE IR T T AR A P N A BB A (1 38k e, AELTE BT 507 VR 2 S RO A iR
R IR LA AN, 5 AR TE AR DB AR B R 1) A B AT SCHR SRR 7 T (Ve ARG S8 . AR SC B TE B SR 1
AP A, X 241 LSS ) A O VR AT VEAN 53 FERI AT, FERI BT SRR N o B AT AT P SR PR A

FLRT S, ASC I CAR JUAN J7 T TF I8 B 5, AR SO GRS 45 il N A= plic AR 1) S et 2 v R i 28 i
SRR A | RN RIR BEAh, AU TR AT N A AT 2518 B 1 R A R I R A AE
B FAREE . RIS B E R, — SR RE . A O S5 A S T LM R VR B AR T
AT RF C 7 VR IR AR e s 5 [RIIRE, AR SO e 1 AT 7 ik iR R B K/ . RS iS5 5, JRBEE T A G
PRIEUE, H MBI . WA ORI 8 R 22 B4 45 6 A RS B P 3 55 J TR E 408, 40 A L E Sz o 7 P 18 38 1 R
FIANELA HARARE B B H AR E & 5, ASCHE T B A AE B TR A ke 2 R 3.

AICHH BT N RN R — AN RGN RS2, s & AR m A AE B ARTE SAT M A i R
5415,

1 BIEFIR

B AN R A (pose-guided person image and video generation) #5 & % AN FIiR 4Tk 032 X 5@ &.
E T ERMR, ASOK 1 e A B HAR R OFE SRR R, O R . 2B R RSB AR,

1.1 EpER

A AR AN AT I N AR IR AR (A% 0, YR T A OO I T R 5 2RI A OB 1Y) E bR A AN B
FR 2 ] BITEAE B0 00 A, F R 1200 A0 A RS N A A DL IE A PR BT, 75 B33 i N A AT % v, 2B R
AN AR N (0 22 A B A B AN B, 38 75 B R A B SRR VR UG R A0 0, 44 B St 5 4
B2 PIKE VP L
L1l A4S (GAN)

GAN & — Pl £H A= B 38 0 0 53] 25 2EL R P R B 3 i 19 o 2 ) AR B I 0k 2 S 000 2 A . 8 AR AR A 11 4585k
GAN FEZR 45 A B AP 2 I 28 SCE A BRE 71, 26 Bs 22 304 IR B 10 PR DA O 40 31 38, 1T 40 0 28 D0 8% 91X 43 L
SRS A AE R RS B X Rt R FE, AE AR IR ) B A R N SR G, RSB A A AR %
o, AR R B4 (cGAN). pix2pix! VAT pix2pixHD! 1% 532 4 F T A8 AT & 45 8 S TR I A\ & 14
41, PG et FF 2% 125 BRI 408 5k 25 1K 52 8 A5 RSt 3 E AR R, AR i LA T B A N % (HL el
FHAFBRMRAL B AR, GAN 25 2 HBIAFRE I ZREE R, S8R BUIRE AR 2 R TR,

1.1.2 85 B 4iBa% (VAE)

A5 H 4% %% (variational autoencoder, VAE)! & — il i £ AL Bod B BLAR B8 Bk 2 ST B A A5 I s 1 A
BUAEAY. 5 GAN HILL, VAE 385 75 BUG A RS B AT BT R Gk, A7 22 R MRS AL Y 25 ¥ e 07 THT R IR 4

VAE TEZ 254 5P A 10 G S AL R v 1 25 IR0 s, 308 ol 450 4% 0 1 2 W) 100 AR5 0E S 42 o) 26 R MG 1 5 A5
AL, VAE+GAN 41A R 8 78, Lt VU-Net!' 414 VAE 5 GAN, LLP#74E s SR 2 AR, $tm AT
R A KT
1.1.3 P UM (diffusion model)

PRI A 30T 4 SRAE UG A AU S 1) — P AR OB, 55 GAN ANJAL, 7 BAORE B3 i 32 25 25 e 11 77 50 A= ik
PR B, B HIORE AL 1) AR T B AR5 5 AN SC B B 1 107 ol AR i AR it 72, el i SC— AN Beb 1
Ty IR AT KA, L IE [ 5O Hh R v B VS N AL P, SR 70 i A e R v 2 ST O R, AR S e
BT A et . b T LA SO R R RS 4E 4, 5 OB B 68 7 AR B N4 B0 H. B S B AREE 1 EME S ATUSR.

18N T RE A AT P GAN BRI 25 AR o R AR AR 22 BEME A JE 256 1) R I, 7 OB B 52 7 oy — ol B
BB g v, AR, B IR B 7 5 T A7 6 W S PR s, DR B TR R B IR AR ORI A5 2 e, A543 A it A AR
SHENG. SEAN, BB Y U1 S R AR R RE AN AR G, T R 0 VU 11 19X 265 R )1 25 SR s SR R A R (1 e
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A5, IR S X N N AR L 25 ANE —E H HBERISST, Ehdn: S0, SRR BoR . BiseAT. B LS
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2 NE TS5 11 OpenPose™ Al AlphaPose!™. 4k S5k 5 Fe /R 2845 (1 )7 VA (Kt s A B 92 FLAT T34, iR
TR SR R, BT SRR R IR, B SR RIS PR GEA SO A iR 3R A
45 2 P TG T AE AR X — e 20 8 R O 2SS O R AE. [N el T3 R i A 7 ok S S A L A R
ORI, W S OIS A FE RGBS, 3 T A SR AL i) 2 3] 47 4.
122 RELEE

REFERSFARBIDE — 4 B G P O ME R B =4 ARRTE, AESETAERTSRETENEEN
40515 5 ). DensePose & IX — U MR T MEHA, 7T LU 7E G5 AP EUE B v B (B GRS =
%A%ﬁiZ@%%%%%@)mv@ﬁ%?ﬁzH%ﬁﬁ%I@@%ZE%N&%%A%&%EW%%%%%
SR T — A=Yk &, AL T % T NS B A B sk TR A DR R U B Ak AR TUV B AT LAE it
TR SR XU B 4 {5 S5 B [ = 48 1) SMPL A2 75 ANARZ A IEREAT 55 v, ] LLFE B R 65 8 R A S R0 AR 11
ARSI 5. {E R, {3 TUV BT & — 5 BT ST 4.
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123 NEENTEE

AR ST BG A5 7E BRI 2 b 26 A 20 B BR, tBRR bmie B B 2 HE R, JLAREE SO AR B 1)
B FFRERNBARSE, XK SRR T B MERRIPERAL, sk k. F8. W55, athmAm
MBS, tean B, W ERME A, AR TR G AU B R SRR, B8 T1E B S, Iifi6E
{5 35 B % B AN [0 [X 3 PR A ISR T, 11 5 A 25 Ak 8 228 A4S 4 1 ) . (L [RIIF, SREAE R (0 N AR AT B AR AR
BT I T O SRR IR A T LB, I H e AR Pt 2 S AL R I 2R R
1.24 SMPL #i#!

SMPL # %! (skinned multi-person linear model) #& —Fh3E T Tl i (1) S 54k N AR, W DUIE S S ek i) B K
HERA IR R AAREZS P BARSK I, SMPL #8035 6890 N 5. 23 M HIHIAE 3 AN E HERSEH UL 1 MR
AR T AR 21, T8I 75 4 0 SHOR 10 A B SEOR I RIS RIILS AR BR T SMPL BB 4b, 547 B8
B LU DMPLEY, I\ T T35 B9 SMPL+H BRI 7 F-#RITH #545 2 1 SMPL-XP 1254 @ 57 X
AR R I8 ok S0 I 7 2B 5 ST A AR BRI A5 DRS B 5 ), RS 5 BB B 0 AR ST B, (H AR
SR N AT 25 A 485 F SMIPL A5 78 o [R] Bef 538 R 5 5 282 [ BN R HEL AR 24 K P o 4.

2 ETSTERI A Bk S R SRR

LEASTER N A AT 55 30 25 58 PRS2 NI AI AN B AR R 835 2400, AN S 8365 Rk 77
ARG e IR AL A AP TR A0ME B, XS BOZAE AL A B R H 5 S2 i AN UG 7 1 T
ECRBRAL. T CL, ZEAEAT PR 5 B AN RS At 2 ) A O\ T 28 AR o BELAE T L R A P A ) 28 25 R R B
HPRSIAE S5, X el 2 B P LU JLANT7 i NSOGB OR B 5 — Sk . AT AN B, —
B 1 8 LA R v RO 5 A TR B8] 3 i, AT A B S e R AR T 8, 45 S BT TE R SRR K
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KA 1 i 8% B PR 1 4 S R, - S A 51 B PR IS P 38104 ot P2 . MagicPose™ i H A Y 22 Y
BB HORIEHEAN R AL T, DA R AR B R P 4035 R B MagicAnimate™! JU) 3= 5 3 i $ 2 2 (0 ML i
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HET A Ak A R R T

FLHAf TAE “52 57 (8] &5 1M 4% (spatial Transformer network, STN)CSR 1 2, 32 0 7 385 40040V — 2 S5 s
A5 Hbp e SIS 2 R BTSSR RE, R STN 45 UG B 25 2% K386 IX — 7 VR A% O JB AR R i i
FELIES () )L ART A% R 5 57 N B X AP ULARRAIE, AT 0 0E B H AR 2. AR, BT AR ARA  AR T 2 va R R 1
(1, X — R AN R IE F T B RS, N, R R GG AT B bR A 2 (R A7 1E A R 07 5 R 4 0 A7 A
SR PR T AR R — 0 A, S S TR T S A RS AR R REAE X 55 5 725, 9, CoCosNet ™ Hl CoCosNet v2Ulji
T K i A B LG 8 0 e Tk, AR R L A DG PR B, T R S B AR R R X — AR AR T
SR AT U TP AN AL, T b AR HE T A 18] (1 5 2 A8 4, b ah, NTEDMY @ i 51 N XU % 5 AL SRR BGE
NXAF R, S SRS BAE HARLA I 55 5 Dk . X — AL 845 SO L il I FEAM A AR AL AR 55, RN T
VB SR ULES, AT E— 4RI T A RS RIS 40 5 B I0 . S0 T B R IR0 i, — 2 kMg & 7 B
SRR = e RS I, DAE =42 18] A HEAT RS 4R A ST . 9140, Neverova %5 A PRI M2E-try on Net™ >R H] 1
TR SR L&A TT4% DensePose %t =48 NARFEZY AT AERIPEXS 57, 5 ML T S 0 4N B0 SO v 22 . 3@ i iX Aoy
3, B REAS 7E = o 2 W] P S B b B2 ) A S R4, AT AR R 45 SR 1T SR PR B SRR,

F—HIENET RS EA AR, AT R RITRBAT S X HI7 LS LR G IR FE AN T s
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RO ATRE B (KVDY™T A BT 91 5 SO ) 2 1) £ 43 B 15 Kernel video distance
FréchetMUFi s 55 (FVD)!"™ 6 A= s AR 2 SRR 40 A 2 10 1 B Fréchet video distance
AR B T 51— S0k, R RN RS .
TN ZEEE (ACD)!' g‘;g?ﬂzm ASIEF RN B, SRR T RS Average content distance
W AR ZE (WE)' zj/tﬁﬁgﬁgg FIE 6, SR T AR T B8 5 T EHE Warping error
e MG R E R
Fréchet K750 B (FGD)'™™ 7 & FLS A b5 AR i R AN TEARAIE 2% ) o 140 49 A1 22 B Fréchet gesture distance
Hef) RF B A R AT b B AR e :
FréchetBik BH B (FTD)!> i%ﬁ?ﬁg’ PR TR A5 $L SR A R 2 ) o HY Fréchet template distance
WA Fréchet inceptionfF B 17 5 A g MR AR5 3 S AW A 2 (] 4 43 A7 BE 25, [ €0 Fréchet inception distance for
(FID-VID)™" B 23 [V RAE AN [ RFAIE. FID-VIDARAR, 57 St iy videos
- InceptionfF 431" i it A B MR ) 22 R PR T 2, Nt T AT Inception score
L (Div)"" T AR A 2 IR R R 85 Diversity
AR BTk s & PR LR B 26 ASEFE TN 25 P e 2 Je 1 102 o A 2 T P S vk, wiTk Top-k clothing attribute
— 5 (AttrRec-k)* RN A retention rate
. 3o WS FLSE G R 4R B A SE AL ) R .
IR I 23 H (PCR)™ @; ;Eﬁj&j&% iR BUERLA N BEFE (LRI Percentage of correct keypoints
v e
—Feie CPHocEE SRR (AKD)' %Jﬁi%f&(%ﬁ%?@ﬁ HOBE AR PRANAE AR AR Average keypoint distance
BRI S ZE (MKR™ S 7 A I B A o 3 1 S S 1 P g Missing keypoint rate
i [A] oz 3 T8I T B S (AR ) R 2 ] P R 5% AL B SR DTk 1 .
éﬁll‘i rl]ﬁ ﬁ ri (FC)[] R ;JEEP [j,:JHTJ_ I‘Eﬂ*ﬁl‘ﬁ - Frame consistency
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H 4 AP A ROTIEAE TikTok 5RE LR3I

Ly % ; Image Video

ik ORI FID| SSIM 1 PSNR? (ng) LPIPS| L1} FID-VID| FVD|
FOMM [1] 85.03 0.648 29.01 0.335 3.61E-04 90.09 366.39
MRAA [79] 54.47 0.672 18.14 0.296 3.21E-04 66.36 284.82
TPSMM [78] 53.78 0.673 18.32 0.299 3.23E-04 72.55 306.17
DreamPose [1] 79.46 0.509 13.19 0.450 6.91E-04 80.51 551.56

MagicPose [34] 25.50 0.752 29.53 0.292 0.81E-04 46.30 -
DisCo [1] 30.75 0.668 29.03 0.292 3.78E-04 59.90 292.80
MagicAnimate [35] 32.09 0.714 29.16 0.239 3.13E-04 21.75 179.07
Animate Anyone [36] - 0.718 29.56 0.285 - - 171.90
Animate Anyone 2 [40] - 0.812 30.82 0.223 - - 144.65
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TELRSEHI AN E AT S VRGP, B T 2 W EH86R 7N, O Fabr K5 B HEBEMEM. 0 fats 3
B A P S I R B R HAE SRR AL RCR S B AR M, AT TRAN TN $6 b 00 )5 BR . BT &, BF AL 1A
TR Py i BRI R AR T A HER I LR A R B AR S R, FR LI R N A
B VEAIBRAE. SR, X PR T AL — LB B AN, 9 A0 s ) S W DA R B BN D R

TE SE B4 A o, B 5 T BA BT SR 06 3 PP 7 v K BT D43 9 VP 4T o A ik LE B K 286, B ade 8 1A o7
TS 2 Fh 2 FE, e T S PE . BAHREMITER M . AR P i ) — ik . @i sasetk. PR
Jo #1550 2 U THL.

4 & H

BRI A A BREAR W Z AN SR T ) Z K SE AR AN E. TERPLRE . 5 N EIE.
ARG RIS sm ISt . 5 2B HARGS G5 N, MCH AW g R PR AT AR
B SRTE A (1 [ A AN W T R i ) S P 3
4.1 EHURZF ST RITIL

REAR R LS AL AR L O R Y sz —, i B AR IR B4 LS T R A B
Hh AT DR R T P A A 8, TS A 2 R s 7T DA LBEAR 19 A 58 e 1545 2 R A

M e, P TR R T ) SR — 08 2 A IAE AR (1) 75 2, (Rl S A ) AR i R, Gl M2E-
try on Net! =5 AR AT DL i MR 0k A BEs PG b 3R, 724 H b A RORAR AR, PP 3R] AZE 2% 1D gk
FRRA AT, 170 2 o RERLRAR ) 7 2, A B i R M S 2 A mT e RIS, O 7 H P s
ANELR I FE SR, AR R TRt T 0 7 4 0t IR B P e . — 3 vk T O3 i g A R S 1) IR B (B s AR AT
HORIRER), R T RO RGN R IE L. DIOM MR B FR A B K £, T LA S I 28 AU 6 AT 45 L
FREEZ AN R BE B, Lo an s 28 T MLFE 28 AME, B Rt AR JR 0 28 B0 + BL 2 SRR, MTTSE 3L BE S )
WG, 1T H ATH % B A e B B TR B AR WE AT, AR T BB AR # OOTDiffusion! A
A1 OutfitAnyone! {5 B B, 7E R4 A T DASEREAR ) B0, SCHREANTRIAR Y (R 4L A F4 T, RSB T %o o 40 3 3R
REBRME. Hh OutfitAnyone 3B 7] LAZE & Animate AnyoneP VEEFEAT LA BB FIHAES. Wit K,
s i USSR Ty N 2 ST B R IE 2 [ R AR B RE A IO H A, Yang 8 N IR AL T B8 30 e R B R, Al
DA 285 SR S I A B AT, AN T 5 B A D T T T AT A2 (8 150 U . AT P it A, R ADLR 28 B AR T m AR By
P AT IR SA O 72 o A B B 14, Fang 25 N PR H 78 B 25 BMG 2 18) & O S0 R 81 R 3 45 R R R3S
J7ik, MingziE . linkfox 5876 7] L@ i R 58 2 BB Z MR T . RS AT 55 (R IR
FH T B AT AR 475 OR B, ARk A SRS A, R 0L a4 LA AR R B S i B R B AE AN [ 28 35 (1 S [
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LA RBEREIVE S i R, AR 2R T EQMERIG AR ST AR A T BT AR A (161
W LR IR LS BN E R b, BT DA Rl AU N A B0 CA R AT RS A0 A e R, X ARG T
WBERIE A, IE R EIRTE T BIE R RIGTE MR,

FE) 5 NAEQIME S, T F RS IR . OS5 i BB BUR, —BERORSR T UM 2 B A i 4 18
157 FK F o IR 28 1), S S AR R 52 35 B A B B A0 5 S 1 110 52 2, {9 Qa1 o il s R A ol e o 1
AT E WA IAMER R 2RSS, MimicMotion Al UniAnimate 5545 AR 7] LA 5 B An ANV 225 2 1E (1)
FLH, T DisCo Al BodyROI7 J7 ik il EASEHIARAR b 15 5 AN AW (0 vy 425, A8 F P Bt S 0B e RO MR ) R Vs k. [
I, 55 RS i AR ) R — 35, H AL (8RR AR LE T AR RSP SIS P AT ] — St SeIEE 2 M esZH. A
TSI B A A AR Fridt— P K.

43 ZIRTSEEER

LRTERUES S5 & ST AR, W 2 R AR (Fan: SO B3 WERREE) Ba Nk EE,
PR T ARG R 2 BRI SE AT VE. UPGPT! R — M2 SO A RIS 27 1) 2 BS54 HUE AL 30
AT HE AT 55, TR T DAk 240 52 w4 e . 1 L8 U7 VR a0 3G 5 2% 1 ) RIS BB 70, {46 R 2% RE 00 T U M A 3 H AR i3S
54 4as, taR T 7 HoR 19 5 B . HumanDreamer! " WIPEF RSB A2 54 SR SCA B 245 (text-to-pose) FlZEAF]
IR (pose-to-video) PIKTBL, 3B i SCA IS ) A2 il 2 MR IR RS, FIFE T35 A0 B T B LA, Aok 1 AR 48 7 1 AR A T3
5 SCLEAS I R R A

5 BHASRE

LAY RBAR AR & RSB . 0 T h . SRS A EUE T B E. R
M, 7E 52 bR BRI FC B2 v, ASRAFAEVE 2 R 58 MR R R, AT MRS BRIR T . B85
R A RIS A D T 8 1 SRR A A R M Bk AR,
5.1 fRSREkEK
5.1.1 AMIE BRI

BT AT 5% R A s 8 23 B AR, B BARE SN, TBA BARTE 4 8 %/ H
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SEEIEO N, Wl 7 BioR, BARAT DUAE BEE BRI AR, (H e DUE — SR 0 I 2R, A0 b e A AR kT
MISCER. BhAb, K2 BB AR T S AR B RS S0 R B b 2 B A AR RS B, kB, DU L A5, 2% 5 15 T )
FAP (0 e U3 I P P it B R, BRI SR M T 5 . 75— B B = 4 S BB E BB ST, |
TASERY S TN N AR AT BT AR R, A il S n) T AR AN B AR SR [FII, E A% B TEAR AR )
PHEDL T, A B D= A AR W03 A B AR Al A 5.
512 BXGEAER

— k5 VLI B I DeepFashion" 45T 5t 8 — (KR S AT I 25, 10508 TR e 52 2% 15 SRR Inl R 7%,
I RIS SRR LA S e ST R SR AT T AR, FEFRAS I A R B B T AR AR TERARAE AR
T, R VA IR I PR B SR AR AR LA A RS B LS SR BN, (1R R R T A RN B R S B A T ER (118
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W& RPN EE IR R AT A o5 5 S 7R I R St B 6 S SR 402 oy, B0 A 2 () 0 P55 7 A DA 2 P b
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Wb A, 75 A AT 7 THI, 200 P2 T P 7 4 P PR A s ) (H8) an T35 P LA B A U S A T ), I
FER AR O Rt . B S AR (S B S S O, AR AR T DU AR R S A S A R B A
FURE BSR4 4. 9140, FIF DensePose S5 AR SR I = 4 NARKFE, 5 BT 78 A2 i 72 o i vl 424 1) 7, J:2E
R AR LA FIBE. RN, =4S 5088 F L0 rT REdE— 5380 A Y5 3085 2 (A1 28 BB RE 77, X TR B LR
2 AR o LA 2 T Y S i 5t
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