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Survey on Concept-based Modeling Methods for Interpretable Deep Learning
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Abstract: In recent years, deep neural networks have achieved significant progress across various domains. However, as typical black-box
models, their internal mechanisms remain difficult for humans to understand, posing serious challenges in high-stakes applications such as
medical diagnosis, financial risk management, and autonomous driving. Enhancing model interpretability has become one of the core issues

in building highly trustworthy machine learning systems. Existing interpretability methods can be broadly classified into two categories:
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information-flow-based explanations, which focus on analyzing the importance of neurons or features, such as locating the pixel regions in
an image that play a decisive role in classification results. Although these methods can reveal what the model has “attended to,” they often
fail to provide cognitively meaningful, human-understandable semantics. In contrast, concept-based explanations construct semantic spaces
to map internal model representations to interpretable concept structures, thus answering what the model has understood. These methods
offer greater semantic depth and cognitive alignment, making them especially effective in improving semantic transparency and user trust.
The fundamental lack of interpretability in deep learning stems from its deficiency in semantic representation. Therefore, constructing
concept spaces and representation mechanisms aligned with human cognition has become a key breakthrough point in the development of
interpretable models. This study presents a comprehensive survey of concept-based modeling methods in interpretable deep learning. Based
on the stage at which interpretability is introduced, existing approaches are categorized into two major paradigms: post-hoc explanations,
which extract semantic representations from trained models through techniques such as neuron dissection and semantic clustering; and
intrinsic explanations, which incorporate structured priors or semantic constraints during training to endow models with built-in
interpretability. Within this classification framework, this study systematically reviews representative modeling strategies and key methods,
compares their performance in terms of semantic transparency and practical applicability, and summarizes current challenges and future
research directions. The goal is to provide a structured reference and methodological guidance for understanding and building semantically
interpretable deep learning models.

Key words: interpretability; deep learning (DL); conceptual representation; post-hoc explanation; intrinsic explanation
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BT WS I RRE 7 5 U VFTE A T B PN SR 5 W I AT 4R R, SRR BV HEAT IR N 204, DRI AR P oy 22 T M 1)
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WESFREE Jiik et fERE 2T fRR i Bl K W 45257
TCAVZ! C-C JAE/ AR Bl CNN
CARs?! Cc-C,V SRS B4 CNN
IBD™! c-C,V SR B4 CNN
31]
st CacE weaEs OO £ i NN
CPM c-C JR B BN TRANSF
Object detector™ N-C, V 2R S CNN
NDP* N-C, V AR E1& CNN
Net2Vec? N-C, V Eodo| E15 CNN
ACEP® C-C,V JAE/ AR A CNN
Completeness-aware CEP”! c-C oo LEABES CNN
Tl ICE™ LELDY S c-C, Vv A R L3 CNN/TRANSF
MCD! c-C,V | B4 CNN
CRAFT! c-C A5 S CNN

JJE A RRETT O TN B PR SR AL T — R AL AT AR Vs A ok T 58, JCHE F 10 TS 1
5 ACRE ) EOR B R IR S 5. AR A BV RE I RO 3R N, X ST7 IR RE S B M R A B W L S P R AR
JE, i N T B RS, R T R R R SORE. R Nk, R TE AR — e SRR, R T
CRABINGRTE T A BTN, HARREAT AR A5 S AR AE I o e v 30 SR P PR SCALAR, A1 LT REAE A2 N
PR ZUMERE B0 UL L Ab, 3 ST7 95 B AL g8 o N SR A b e TR, T = RS 28 A AL ) ) 5 B0 . e
AP 5 A L S 2 [ A5 148, A7 12 U T s £ 2 B2 Bkl —.
21 ETHREMSHNERTERETE

BT B RS IS A AR T 0@ R R AR AT S AR, X HEAT 3 SUR I RTRA T, 122K T5
LA — A RE SRS AR R, F T IR SO B K AT e 75 55 3 4 iy J2 1 OB A7 AE SR I, AT 43 7 B 2
PSR -5 A ESHLA. J M T R IR 5 NSRRI & S 8] fR 0T 25k 2%, SR TT AT Bl T G s B TR AT Dy By T 2
e S M, BT P R R TN (5 A P 12207 I AT ARG NS T OT 1) — R IR TS 525
Z TRV DR R AL, B s R MR A AR 0 SRR SR rh s PR A €5 53— SR B T8 % 5 M 8 T T S TRV 12
KA, T Ha7s B A B o (3 S 4.

FERT 5 R, MR S 1 R v P B AR M A A, S IE T A A B (K AT 55 ] 3
IR, TCAV $H 1 T Jo 75 A2 CAORE 2 45 1 RV AT VA R 2R ot 75 A0 ARy 7 M R AR S, AR B3R DL N L P 3R

G, X R, MER A ERREASE: — NN IEREASE, B8 RS NEE; 5
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RS, AT RRAEEZM TR, X R AR AL, A SR ERHIE R R, Bl S, TEAFAE 25 5]
g — AN 2588, H T X IR AR, 18 311250 2810 0 ), RURBEG0s A &2, F T 20 8 B S R R AR
2B T PR R . B R, D PSR TR X A I AR AR AR E, TCAV TR 25 8 SN T IR 250 T
5 CAV Z 81 s, RIS T ) 5 2505 M i o T () SRR P 4 . A U T DU 304kt
N Ckil (x)=Vh, (f/ (x)- Vlc,
For, fi(x) B TE B0, v RS C IMREER0E M & i F80R R T RS 7R AR T 12 288 7 At ) 1 ) 52
FREE. @t — b, TCAV & X T — A5 48 4% (TCAYV score):
{x € X, :Scui(x)> 0}
[ X

ZAHA T EEERAY, 8 2 /0 B FIFEARST 12 R B 535 1F R USRI 15 208 5, 0 I 2 S o A
B 53 845 R oK, BRI RER. TCAV N EMMRAE T R F B R M B 254, B0 i 1t 5 1E B
P, (A B S Ak 8 Ak 0I5 SURRE, 2 B TG —R A R i h MR Dk 2 —. £l TCAV JriEidEid
WGRE 1 73 FAR AT TT W (CAV), FFI 77 ) T 5088 Sk 8 o B 2R S0 () s i), DA vl SR vE it e 4 it 1 R
4 R4 ATAESE. SRTM, TCAV £ T M RIR, 2% 1 R0 48 ) 2 thRRAE B BT 28 R s TRV 25 4045 5, PR T 0 2
Je i OB ARE G 2. Ak, 5 S HBAER T SO K B 5 7R TSAT!, i S Fesk mAL 2 ) Mk i, £
P S8 T AN 7 [V 4 P2 A S5 405 5., B FE T SRR IO SURS B2 58 8 1. 7 VE A ITE AR B AT R G S M R 48 T 5B
T R R RS AL, ISR ER T TCAV TEE R 15 XML = 43 e BRI vl e 1k e,

T 3. @ﬂfm‘unfgﬁﬁuxﬁﬁ)\mmﬁﬁhﬁwRMR
(50) FIH:Ab R4 — S S .
W E = B K" class

2. RN (BEL) 1Y \
Ve e ] %

2 s e
Ny Jy W

TCA VC,k,l =

, T s R, R A SRR
IED S@ND) 6D i R A B T U
fED s =

@ Secad " )

Ve //(5) .
LU Nt ) =7 (R ) v
4. VIESVMA K3, B BOR I B A2 T4 2600
B3 RS R AR Y

Bk 1 TCAV S5 771k RVERE S 5 28 ) 2 8] AR AH G It A, Aot B 1 — e o L 5 g 4 AR DR SR iR e
R4 & J7 5. o, IBD (interpretable basis decomposition)P 42 H 1 — Pk FEIIFHE 20 Al A Fe ke O IE SCAL AR S mg,
P TR 225200 2. IBD 1§38 5 HES M I 2 (315058 2 208 AE = 0] P 14 1) &, 0 0 P 120 7E 2 R P i
— LR A AR R A Ty 10). B, BTG — A BN, X SR 1) B SRR RN 2 R ) A AR T
TS S 1021 28 250 R T8 5 R o R A 30 TR 189 A D P 5 R, 7 ke 2 T DU g Pl R R o A A R o P R o 7 5 11
TRIAR 5. 4k, IBD 38 RN kA AR BOnt B2 1) #4771, DA 7R W e iy N IX 3 R IR0 1 M2, AT 38 SR AR 1Y)
AT R

S AH RTINS T EAR ], 73— BET 30, B3 T o0 M Re e ME e A2 A 1) (R SR s ). B ARER
& R SR & 208 (causal concept effect, CaCE)™!, FoAZ 0a JEARE VA5 B & 76 TN p 2 75 B DR . B AR 2
X SR AR AR AT A GO 0 T T, AR 25 B R A S 0 S T SR AR, T A 1M AR T X AR TR A Y ) s
ZE . %7 U € OA CaCE H, A T EWZBE& R RN, N T w8 LBl — i #2, A i 4 1 P Fh s
— AR AT R PO R AR AT N LT, 2 TR DS B 3 — S, R A AR R (AR 7 B RS ) XA B
AN B AR 0 BRI AT A, AT AR B AL R FF SRR AR, X SE SR B N T 2 AN AR 4R, 5 AR R
TCAV L5 3Elihi CaCE #HT LU, SLin 4t AR BH, CaCE A R R 1) H 30 1E 55 T e SR A7 76 R AR o0 R A
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B 1 @SR SRS R RIS R TTESN, B — R ARETREMN SME SHEM % N A TTEs) 2
TRV FFIR ST 55 2R, B 7E ARG O R A SCZ TR RRE, HR s B 28 pA s0 JRAE F) ] AR R Bt 761X — 7 1) |, Zhou %5 A\ ™)
IR TS o3 M 7 IR BE RN W 2 FE AT 7 50 43 R S5 1 R vh B 15 e 08 11 302 ) HH R &1 SR SURR Gkl 2% 1t
FORI, TR TR, B2 # & TC A AT FRAE SR BT 5, 1B AR % 1 25T RO 5 e 0 GBS 20 A 358 0 ) gy
RN T B i b B AN 10 42 T AR SCE S, B F0 38 B TR0 N SB0E A B, 434 G BT SR BRI LG X3, I 285 & A2
AALRRTE, X4 42 TG HEAT 1 UL 5 4% BE VPl SB8 25 SRR B, K2 30 48 70 B B4R B S 2 T AR 30l 4 1 SURE
&, TR U TS BRI 70%. TE N SCHE 2, BEAE W25 2 IR, BT ) I RE S S B IR ) e
U3 LB W U B T = R R A A K, R B RSN BHA GBS R B 7). 5 BL B TTAESRAU, ND
(network dissection)®" & ZE MR HY T — b FH T ARAP 4 0 1E SURIARAEAL J7 5. HoAZ 0 H bR K i 22 0 45 o (1) 45
AP TOEOE 5 B AR T RS L BRI R, D, AR MR T — ANz A AR M #E S BRODEN, %
HARERS T ZFRIE, MGEHE0. 808, MR, stELMZERNE AR5, ND J5iFidEid X E &% (inter-
section over union, loU) 3K J& B & JuliE B 5 bRy ME & X I8 2 [ [ VL HC B, T AN el T i 2R 1
T FRZE. ND B%iH 45 RRIR 1 A0 2 0 B B2 R 28 B, I A r 2 A4 42 J0 34 [F) 3R AIE 8] — 15 SO, T
R TR LRIE M Z RS M. SR, 20772 FIHERA M v B ARO T B bR 2 R I 8 3 YU SR P . SR
L6 S PR AFAE T IO B b BROME S AR  B BE AR, D2 2 T VT B PRI B =2 A Z800T I T AR AR A AN T A, 3 T 5 i)
BRI R X TT LG R, IR E LG I A A E R A BB BT, A B3R & 215
SURFAE I BE JT. XTI T #4845 58 A BB A IR ZI AR ED R, A A8 G 5 T M2 (0 v A R ML A A0 T B AR 4
FEAR PR AR, F B T 4 0 G SO 5 14T BB S HAME .
22 ETFREEBHESNSRMEGE

2.1 WA MBS BT R T B D BE bR a8, SR, BT 0T VR BEA A N 45 % J2 15 SCHEAT 4H0 B
Fids 2 — IURAS iy e ELAR AR B4F 5%, ME DUIE R SERR I st 2 48 B 75 R ZEBLSE R v, AR — RS54
BB SR AR R AT, B, AL ERERICHE N LB RS @A, 2T s, B
T P S 2R B0 4o 22 I 448 o s U] m (R AR RS AT 23 AT, Rt — B 0k A = 5 A R TR &5 SR 2 1) 14 9%
X FINEN BB B N AT 2 BN S M PETE RO, IETE— R LR T N AR AR G, 42
T TR VR I P I S T R

HEBEW UM S IR TCAV RE, BSR4 (automatic concept-based explanation, ACE)P&—Fh
T 78 N L B BT 23 B I 2558 1 ) 4 A Y e B — SR T @ 8 R B B AR %07 AR DA B LA LAY
B B, WE T BAREA I EUR#AT 2 o Hr R R o #, DIRBUR SR S0E . R LR e B REEN I 2 JE IR
DL k. X — I 78 B A A T RIS TE I RE ik, S8R5, X e A IX el ik N BT 11 1 2 AE =5 [l b, R
K-means ZEX EATHAT 734, DARBUR USR5 6 NE & Dot Gl 75 T3, ACE 2 HERR AR LE ] B 3807 1
TR B PG DX 3, 48 nids 25 T O IR Sk Bk = 10 SCRR M 1) B #6585, M — AN BB RIS EE R TCAV
HEZE T3 F R S8 50 T 45 SR T S NE S U A 23 4990 B s, SR i i 20 Tt B A S8 i A ik 1)
DUk, B4, ACE Hiith — N T TCAV 350 HE 7 10 s A JSRE & 51 3R, T S I TG W B 108 SURBRE A, il 4 P
TN, BT A E BN BT 4 B TR T KR IR SR SR BT SRR 2 B PR R

REHTEIGSE. BRI E 2R IR %, ACE T 88 1R B354 o B LEA— B =R, (HiE K
B ARV LI IE R I, ACE Fri@ BN &7 AR AR 2 i) B v B — Bk, s ] e N 28U 828 A 19 11
ARG SRS, X — KR, ACE TEAKBIN TARERITE LT, V1R800 E & A 56 B RS 254, A
SR 0 M A AR Tl R AR M i —

RE B EHREUT 2 (ACE) ReBE T TR AR B B2 T, MR X 248 v 1R 1) R R M A 2, (R AR B
TR B A AR 0 B A THI AR AR P TUIAT M. S BROX — SR PR, Yeh 26 N B7HRH T —Fhildt 7 ik, BIN T B e %
PEAR I3 IX —Fa bR, F T B — Lo AR B T 1) 7 5 BB ). AR A% S T



1600 AR 2026 5 37 A H 4 B

Accuracy using g (ve(x)) — baseline accuracy

My (Crs-eesCn) = Accuracy of f (x) — baseline accuracy

Ho, f (o) R BB RSN x BT, ve (x) RN LERFE T (8] ) ERTR, g Rt G 7 i (Bl i i Fr) e
WY, baseline 1 H 1 FENURE B2 B TN, 15 58 BEAEAG 50 B, k430D 1 RO M AR 08 500 7 M A R A
T W SRARYR. SR, B 7 3k — 2D 4a AN E 52 B M AT A A2 DARA S AT S O S AR, TR R0k 20 1 MR A ]
FRRETE. TH X — 3 DL S5 N E R E BRI R, N, 5 T — PRI R & R U, TERIE R R 58
B 1 [ BT, 8 SN s 0 7 2 ) o 5 AT X I AR e M, AT B 0t B LS SR SRR G, A, B T
W H{H (Shapley value) HJEAR, $2 T H T 18L& 2 1) B 2T Al $8 bi——ConceptSHAP, F T~ B RS th i {1k &4
HEE 28 % 20 TR0 1) 32 B DTk, ConceptSHAP 730K 7"l 1

S1-D!S|!
5:09) = me,w [7(S UleH-n(S)],

m!
H, CS ={cy,....cn) REETBMELE, B8 m MEE; nS) BRMUEHMETES MBS D, 0 Ula) B
M S JJDL c; W2 BMEAS 3 JBI TE A S 45 A SEEIRAIE, 1Z 7 VAR R P54 HOE SCAE NSS4 51, H
T ACE BRI B E N, NIRRT Rt 505 W FE SR 1R Bk A%

BUP ZOPEREGAE B2 BRI ERE g i o e
A&

EEE gy
: s R

B uu ; =
% 5 - DD o4 (i

K4 Hah&IRRE D (ACE)™

7E ACE HEZE 3T b, ICE (invertible concept-based explanations)®* 3t — 32 7 7 HE& R i) 5 5 B LS4 11
HERTE. Z T AR FE A R B R T K-means 525, B EAERHIE B 3R EUA BRI B A 7T 0 HE i &, M58
B R PR RTE R B TE MRS A 5108 TCAV 1553 A ), ICE W4 M-S 1 2 ZE M0 A5 By 1) 28 kol
UL, 3T T AR SR T R — 8. SEI6 R I, 5 PCA F1 K-means Z54£ 4 J7 75 Eb, ICE /£ S AR 22 f A2
AT FRREVEPEAT L3RI AR,

FE I IERE |, MCD (multidimensional concept discovery) 4/ Hi38is 1R 5l B 9 4% e 4 1) o (0 22 42k bk 7
B (RURE T 25 16)) RS2 A4 Je) J2 T PR ASE B A A8 . 122 7 V2 1 S A T A B 7 25 (8] 58 2% (sparse subspace clustering,
SSC) KIETEM S, T PCA $REVG ALK £ 07 W, HM @ — A S & 2 medy, T E e
A543, MR ABE 2 5 S0 AR i R e 3. A, CRAFT (concept recursive activation factorization for explaina-
bility)*"3E— 9 & T ACE il ICE $2H 10 TC I B L &2 IR HE L. CRAFT ¥ SGilad BHLE B 7 2N A s G A B, il
S IK 7 PR A v B 2 RIS I B, S NMF -7 8E& 720 ff, 3RS R E 2 R oK. CRAFT [—K
Rt R B E I Z R, RSB IA AR S S &, H 4G B3 MBS BURME S T nI AL S
PERE &, 3R TR 2 JEHE LRI IR R RE .

2R ATk, TR ) 3G AT AR 7 R TG 7 T SO B SR, ELREAE DR BFTIUI 4 B BT T SR AR ST
AR, DU HOE H TR 25 40 A W] TE B B R B H T R B 3 st IS8 7R it 9 A AR s e 4l 1 g 7y
M CHE, A BT ) EB LS 22 e, IR A A AR, SR, IX RO VE G — kR S R R,
Je, TG R T S IZR5e S n Ry, Gl oV 454 T IR — B3R AR R, 50 32 B R AR A M B I 200K,
R, TR R ME 2 HF AR S fe 5 AN 2818 L — 5L, 1T Re 3 SRR p RO PE B . ), )5 7 VR 7E S i1 Uy T
WS, 25 5 52 BRI AT, 72 0 Bods i 7] e stz S AR RE.

BT il L, R 22 B 9 R AR £ AU ) R TR Y. Rudin 25 N PR T — ARSI 7 10
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DRATY B IE W 55 m] B X ST R AR TR BT BOBURE ML & 1N 15 45 4 T foRE PR D9 S A, Rk 5
TRPEAE I SR R 3L R AL, MARA E3RTHER BB B RE . Rafi ik 598 3 — ik

3 FhHERRBSERGE

S AT fERE /7 (intrinsically interpretable method) ¥8 12 E ISR AR o 51 S E R 2% 32 3% 2] 5T ULt
FE N R TIN, AATH A X 245 &8 ) A B B 2% P 28 D AT AR . AR E 8 2R iy 3 B B AR 2R 2, Xk SR T I
N4 2 O F B AR T B RS AR AR I ZRda 5 @ TR B ikl B 4% N 45 48 B BT & R
@ WA JETEMIEAL b RS> B AR 5 o B L], LT v S 38 T @ A T i B AR T R A
RN, 51 AR 2 =) B B SORFERRFE. A SCER 2 g T — AN Z AR HTHESE, R T F bl il 7
IETERES ISR, RS EFVER. BRI B RAT S MR 555 T TN 2 58, IR ss R 45 . AR af 2%
AT 3% (AR 285y E 4 3% (VAE) LS R AE S48 (LLM) %5 E iR ALH.

R2 BT REE K AT RRE T

W& bRiE J7ik eyt ] fF R Rl K2 527
CBM™! N-C, C-C JR s/ )Ry E % CNN
ProbCBM!*! N-C, C-C EEES ] B4 CNN
[47]
i CW . i N-C 4 JR) E& CNN
CEM N-C, C-C Eo] SEEA CNN
PCBM™” N-C, C-C RS E& CNN
cTt” N-C, C-C SR/ AR B TRANSF
Interpretable CNNF! N-C,V A )R E& CNN
;ENN:] - N-C, C-C F}—ELB 1%! CNN+AE
otCL N-C, C-C SRR K15 CNN+AE
SelfExplain®™! C-C,V JR /4 )Ry A CNN+AE
ProtoPNet*" N-C, C-C, V SR B4 CNN
s ProtoTree™ N-C, C-C,V SRR/ R El& CNN
HPNet™ N-C,C-C,V  JRil/aR E CNN
TesNet"””*" [ N-C,C-C,V  Jaih/4)H E15 CNN/TRANSF
ProtoPShare!™ . N-C,C-C,V  Ja#b4afE K15 CNN
ProtoPFormer™” N-C, C-C, V JRERI4Az )R BB TRANSF
Deformable ProtoPNet®"! N-C,C-C,V  JAi#f/4R LA CNN
MCPNet!* N-C,C-C,V  Ril/aR K14 CNN
CBM-AUC™! N N-C, C-C 2R E1%. W4 CNN
RE Ante-hoc!® :Eg‘ﬁg% N-C JRER/ 4 R K% CNN+AE
GlanceNets!®! N-C, C-C S E& CNN+VAE
LaBo™ Cc-C RS B CNN+LLM
Es5s Label-free CBM” SRS c-C JR AR ] CNN+LLM
Align2Concept'® N-C,C-C,V  Jafl/4fR E15 CNN+LLM

31 ETAMEMSNEPARESZE

4G TTESML, S A B RS B A AR T AR R S R S R B SR (RS RSUZ e oA
T ANIE SR ), DUR 5] S BER v a] J2 22 20 0k AR AT B L& 1 30k M AR R S SUBEY (concept
bottleneck model, CBM)™*, Ui[&l 5 Bz, 2 AL ZER N 15 T H R 2 18] 51N —A ph 5 SN 4 28 04 PR 251
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JZ, X SR ST R R 7 P B B e TS SRR, I T I SR A s A L 12 R
ik R r:
¢=f(x),3=1@
{ﬁ =fiofe )= f(f(0))’

Forbr, B8 1 AT O3 SO ME & TN R 50 s DB N 810 RBE & T RS b B GBS P 2 I 56 ); B 2 4T 08 SR AN N 21 HE
G PR H CEH ORI ZR), A CBM A LARIE N — AN 4 B3 544 Geom B 578 B RGN (G ]
BEZR) SIS R (g™ £ AR, CBM SCREM S )2 JOAT R TR S, IZRpr Bomd i+
IR B Ak, SRR B 22 705 NSRRI B xE 555 I B U SR P T4 S 0 A 7R M0 14 (0 48 1
S A R 2 . X WL ORIE B T AKLSS ELRE ), FoVETe SANTH Aok R T B B LA TR 0) SR 45 4 1 R B
fige (M0, K IE W LR D ), DA o0 S A .

TEALAE

il HARIES
S R
e
(O) mpmie

FEEts  HiMES

LRSS

O ) i s

5 MESIRAE B LK (CBM)H)

A CBM SEHL T T ) AR A P e S % A, L JECff o 1A MR T 7 T o 80 AR Ak B S b S T e 1) 55 A
B A R s Mk A5 T {5 T R MR — 1), Kim 25 A VOB T R S SR A (probabilistic concept bottleneck
model, ProbCBM), 1833 X BANE & 2% 3] — AN IER /A BN, 1IN TUIIAN € P AR, #4480 CBM 18 F #ff g M A Y
TS C = g(x), T ProbCBM A I3 1k A Fe k452
pzlx) ~ N (u.,diag (o)),
b, u, Ao, FHARZE 2 TR, n B RS 3 E AR B M. AR S, 1208 BRI FH S84 R I KA M 2 A7
HG AR EREEE, IRl i X Sk S R N\ — P HEWT R 2. MRS R DA E R T E T

Ny

plc=1x) = ]% Z s(a(llz(c") A | —ZZ||2))7

S n=1

Hoh, 20 flz; 5y BB S TR S ARTEE R 4, s() 103 Sigmoid BEY, o FoRAT 22 ST RIS R 2. eIkt f2 v,
ProbCBM &8 H — 7o 28 X 5 KL U AR 451 5% ok 2 HHE R B 0wl ae o SR A SR (At ok S . AH B R R
CBM, ProbCBM #& 4t 7 —F S inAR i, mI{S 1 SUAf Ry =X

SR, A GRS R, 7 BT AR ) (RO, 5 B TR JBE . O A P — A8 ) 75, Zarlenga 25 N 942 HH
T AR (concept embedding model, CEM), JHAE M4 22 S AN B &AT SR SRR M &, 2 B R H
5 S AR IRAS . @ X X W AR ) TR A, CEM M = B IR RO, R B AR TN 28 5 AR T (T 45 T
. CEM [FIFE SCREDR B B AT 0, {6 40038 5% e 4 IE AR Bl A s MR 0 5 ), BT T B S 23 . L 4h, A
FHILFEW T AP TR AR MES X 571500 F T & 2545 PO R R 5 S hR 28 1) — 8Ok, 45 RO 234 FH 197
A& R NTE R4 5 3R0E 2 (A FIRUST . SEIRAIEHA, CEM fE 2 NG5 (45 CUB 5 CelebA) ¥ FELA CBM,
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FEMERRTE . ATARREIE 55 HAE 1 T TR LR .

BT %t CBM AR 5 K 52 M b v R RS 32 B B9 1] 731, Yuksekgonul 48 A U913 7 355 HE SRR (post-hoc
concept bottleneck model, PCBM), 1% J7 V2 Rl KGAT B PRI AR L e Ab oy B A& nT B ME 1 CBM 284, Jo 7 Xl 454
BEAT AR, T REEVER ST Y. PCBM A MAMEE S SR R S E B, BlE & 2 SR\ B RIE
TR PR BGE SRR, HA IR GG IR ME OIS W 2 SIS T R RS M B SR RS AR
T W 2 3R SR ON 23 (W) i JiE R P T AR OO 8 (AR i 208 P A TR B SRR ) 4 MR LA 2 A 6 T SR R AR
B, PCBM 7E 2 A4 4R | 5 SRR B M REAH 24, 17 H i 208 44 PCBM-h BB /2 78 BTG DI A 5% Hh DG e L 22 5
BLRY, FA A T HAE T HRARE A T B m AT VS A Rk

AEF CA_EME SIS 14, Chen 25 A YR H T M8 146 (concept whitening, CW) A, BT X} (4% ik i 2
() 40, SR L 2 1) 5 T8 SO % 5%, DT B 375 A b 1 7 A R i ] i 0 4R SR 1. CW BB R N7
e 2 P 8% P 0, Sl A AN R AR VR S R HEAT RS A L, A8 TE 25 (R i 5 N SR DG R & 5 Tl — B | —
H P 77 22 FE R Al B R R 1Y) B it AR 4, BEAICARRAIE 1) TU AR 2, T @ e L B ik — A0 SO SRR AR hons 55 2211
R AR, CW AR AL AR BR (058 M) SHEERT Fr a2k, JG 38 i s R A BEE T )b B0 SR S Bt 5
BAR. XFHLHIA SRR T IR UGAT 55 P fe, 0 525 3G 50 1 B2 6 M8 1 R AE 68 71 5 AR R

DA b7 S B R A 4 R BR T E ISR A &, ] 3k B AN ECR IR, EFE AL LS BUR 4R (0 CUB-
CW. CUB-CT). Wi EARIE (i CEM), BS540 AR (1 PCBM). SX Ry Ji 75V — 77 BT B 14 9 1)
Ui YN ZR MR UE SR RE, 53— 5 TEERE T J2 51 N1E LAY, (AR 45 48 1 AR RN P AR N 2, AT ) 2 S 1
Ae5 AT R B B AE 4.

32 ETEREEBHMANEPAIBELE

T B R SR R - 0 22 ) 2 B 322 ) 3E UMY R, TG R 4 A 5 T A5 . =00t 7. T i TR 1) ARy
A7 [A) v R AR AR B SR 2, X SR AR Y R0 B ) I B v V8 AE 45 4 5 15 SOV, AT ZE AN M L RR v 1 1D
FE T SR TR AT fR R

— ARG 7 1 i X A AL AE A 2R AT RS, DA KA AL RS HE 2 (] () f 4. Zhang %5 A PSR T —Floy
%, B G R M 2% (CNN) B4k R 451 38 BT R R X 28, A% O AE T 487 1 2 5 AR T 2 21 B A 4y
FoR. SR, FA SR BRI T AT 1T SR — R E i X, B HAIMIRREE B, R e L —
ZRAS ] R 38 DX A AR, I DUMBEAR 5 3 FUAZ 1A BLAS B AR N 2k R 8, SR AN SRR 2 = I g 18 X
X35, T8 o AN [E] R AZOR AR [ X3 T AR B0 . SEER 5 R M, 7B E 24 CNN JER A8 4 B3 R T
WA 53 R 8 A R T 5 AT AR R

T AN T i) 30 5 A TR R Y SE I A AR BE /7. Alvarez-Melis 25 A PR T ARRRAHZ ML (self-explaining
neural network, SENN), 1ZAHE 42 AL A2 47 8 28 B 55 2 VR FE 45 7. SENN Jd i — /ML &x g L 2 S BT R
AEFEHEAT 2 SR )58 S B YO S\ A2 R A8 AR DG PER e 28 DU 5 OB M 4 1t 2 &
TH &5 L. R T R B TR B S ME S AT HE I, (RS 5 NFR B E AL, B R RN N DU D BN R
SENN k&6 45 BRI, 1ZARRYAE R4 40 S PERE I (RN, RESR LG MITEMT . MRRE B IRk, AN id, SENN [k
Tl ) 2 31 7 o A SR MR A, B JR R ARRE O S RE. I, bottleneck concept learner (BotCL)™ik— 2
G NFEVER T (slot attention), LA B 1R 1 G H 11 = 3B HE & 3K 7R . BotCL 7E B @ 412k 1 254t b 51 AT HLHik,
o IS HME R B D7, IR G ORI B V. SEIRUE A, 75 2 AN BB 53 24T 55 1, BotCL 1 Al 14 Fl AR e 14
IR T HE SENN 7E N I 2 Pk 2 58 i BN Re i 1 SR DGR 5 e 4, 3 Rl ok Ry 3= LAk R
HEAT AT, B 407E ImageNet bR 53 e £ (1) 1 ERFNEEER, MR B 45 1 A0 i BB E SRR,

1E HARIE 5 A4, BF 70 e IR R TR B 8 (1 M 2. Rajagopal 25 A P ) SelfExplain #E7, 4 42 J&)
55 R 8 AT AL R A i3k SOA 3 2R 48 R, DLATAE GO & B AL G i SR AR AR o AR By A 8 — Ty T i ok
WARE A R 2R & hon S AT N\ S AR 2 RS, 55— 77 TG X 2 RS 5 B ARbR 28 18] (1 AH 55
P, AT BB 78 5 AT RSCAR S B0 I, SelfExplain BEILH EAFU R MEREIIE LT, 35 1 o fdR:
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RCORHIRE ). SEUE LA LY, FAE R AL A B AT (S, AN T AFA A R B e v i — S5O 5 T A

TE TG W B T R 5 10, ) — EE R ) R R 2 A AR 1238 VA G VI R AR 1) R X 3,
A 3h % ) B REME N RS, HE T HSMAREARRAEBE TR K. 5 RAMNFF SR AR, A 7k
Tt T 55 B MR AIE 2 [ w2 R4 - (R B8 7, S RTS8 % B Bt N 1 22 B R 4 A 20 SR 55 S 1, AT 3L
B 5 1T AR AL

Chen 25 A\ PU7E 2019 4E42 R B 3044 R 2% (ProtoPNet) F&1% /7 il TG TA4F, HEZ2 B0 6 Fiaw. 1% 5 1%
TR G P R A R G TR TR AT 4 2, B T NI R Ll M YRR IS AR, ProtoPNet F 45
FURHE z e RF WP 5ER p, e RUP 2 AT AEAULEE AR Bt I, TR B 2SR A =00

o o[BI
gl’/(z) Zepatches(z) ”2 - pjl |§ +& :

G2l AR MR S e S Y s T PR 4 R e R AL SRAG A S UL RE A5, I & DAL
PEIB S TR 45 . 2 3811 ProtoPNet MR #2004 3 NP B:

o BB 1, JRRIR 3] IRALERML f FRLR P, [8 € 2IERERE w,. 2 BOE S ORI KA
SREEBUR AR B R e, Horh PGS, P=(p)],
min %Z;l CrossEntropy(ho g, o f(x;),y;) + A, Clst+ A,Sep

P.weony

n n

1 . . 1 . . ’
Clst==>» min min |z-pl; Sep=—= > min min |z—p|l}
n < : J:pj€Py; z€patches(f(x;)) n 4 : J:pj#Py,; zepatches(f(x;))
= i=

o BT ER 2, JR AR R AN R p, “HE B 5 HARIE (I ZRAEAS latent patch b, T4k
)2 argrzleliznllz—pjllz
Z,= {212 € patches (f (x)), Vi, sy, =k}
o BB 3, F T IRA /328 EF AT 1 IE WA 8 E N E w,, BUEET B & 200 R Ak 17 75 25

min 1 z": CrossEntropy (ho g, o f(x:),y:) + A3 ZK: Z |w;lk,ﬂ )
oS k=1 jip;Py
/B

A

Max pool —
ol
»3.954

» 5.030| Black footed albatross

q

Indigo bunting
4.738 | Cardinal
p== . 7 . . ‘ 27.895| Clay colored sparrow

L . k — . i . A —
Convolutional layers f° Prototype layer g, Fully connected layer #  Output logits
6 ProtoPNet [ 2% HE 4 ] 124

Kl 7 H1JE7R5 T ProtoPNet R 7E EIZ 73 8 v OHERE I 2, 1280 Js 2 bEoxt ) 07 s S a m] et 7025, A
KT &, BN EHR T Se 4t AR 2 FEBURFE, 75 7055 2 21 B 2 AN R R4 T DL RS, B B AR 2R B 2R Jey
RFAIE (U0 PRk P B 0B, TR A Ay N PR o 7 55 48 IR R i AL ) DX, I T 5500068 12 AR A ABLEE 734, B e KX
SEM S R A L 1, A5 BRI 2 0 I SR FE . AT SR B P ST FEAR IR G2 2 R 28 0, B2
I B S E R R g
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Why is this bird classfied as a red-bellied woodpecker?

o

Evidence for this bird being a red-bellied woodpecker: . Evidence for this bird being a red-cockaded woodpecker:

Original image Prototype  Training image Activation map Similarity Class Points Original image Prototype  Training image ~ Activation Similarity Class Points

(box showing part that where prototype score connection contributed (box showing part that where prototype map score connection contributed
comes from

looks like prototype) comes from looks like prototype)

b
._ W . 4.392 x 1.127 = 4.950 -. 2.125 x 1.091 = 2.318
!- 3.890 x 1.108 = 4.310 R - 1.945 x 1.069 = 2.079

Total points to red-bellied woodpecker: 32.736 Total points to red-cockaded woodpecker: 16.886

& 7 ProtoPNet #7424

: - 2,452 % 1.046 = 2.565

‘ii

SR8 SR R TR 4 ) 4 2 T, Nauta 25 A PIBR T JEUEUAR N 2% (ProtoTree), o J5 28 B Ay — SUR Y 257, #4078 AR
Bt 2 2o AT RS YR R AT 2 o SR A, AR It Ve EHR I BR AT I8 28, AT RO 47 5 2 ST 200 4 A

ProtoTree 5 NBYRGH AR R B Al WAL AL, 45 20855 1 4 RRETE. Hase 2 A POt B3 193 2 SR R 4% (HPNet),
XM BN 2 95 B H R S5 4, BT AL RE FI W Z G & T 52600, TR R B R Kk R
1V J& 5% 52 HPNet BEFEALERA WA (UneT-4e) I it & FRARE T (=28 9+ a0ae), $ 7 1R 8z fL e

FE X} ProtoPNet HEZZ K3t — 4 g o, A HIFA#R ) T TesNet (transparent embedding space network)™"**), @i
o 35 B B N 25 ) 2 S W s, S35 A T T R 2 ) 14 ) ) 1 5 AR R B ). TesNet J4 45 AN S UM 725 1R 1)
I [m) 5, AN R 290 () SR B ¥ 25 (8] 7E. Grassmann Y 2 (Grassmann manifold) L #3EAT #5052, 1525 8] 40 A5 56 I 25 5]
g3 G G NJFE RS AAR ALY, 45 R T 5 G A 1) DGR X kgt AT B Mk R, BT SURRRE (W B AR5
TesNet 1£ 2 MHRLEE BIE5r A5 1T T o MR SRR L. Ihah, HUG ST RO — 29 R &
Transformer 2244, JE5IN T F T2 MR TUAR I BT R S00:, S & i 22 51 SURB . [RIFE 942 % ProtoPNet
o JEU R T A% 5 2 500 R B 6 1) A, Rymarczyk 28 A PP ProtoPShare 777, 7E3& BT Vision Transformer 22K, Xue
25 N V4R H ProtoPFormer 45 & 42 Ja 5 Ja 5 JR B g BEAL A, 42 I 2R 4R (X S i Bk e, o i SR R B e il 5t IX
B, P P RDRSIE, Bk T R EY Xo 34 P DX A P D

HeAb, A AR Y U AE S AR e T f9 G 55 7, Donnelly 258 A %3t T A7 48 T JR 20 f 2% (deformable Proto-
PNet), 4 JiE BY R /R 9 AT B 3T N 25 (A7 B KRR 4 6, AT i 7 AT H bR R 5 LS B RIE M RE T, T2 A
FT CNN _E#3K78 B MEREIRTE. 8 RIS (12 Uik, MCPNet (multi-level concept prototype network)™ Il 2 —
WEINZ 2GSRBS, IR 2 AW Z ) /i, PRS2 REE, R FMES 5 A0 5 /28 0 55
LYREF T IR AT X 43 1 5 — B, MCPNet AMEFRAME IR, A T4 420, I SCRrEE T IR Y R AR (1 AT 4
{LfRRE, 1E few-shot ¥ 55 £ HHE S 5200 P 38 FR L HA BECK AR B8 ) 5 HERf 6.
33 ETRAMSHEPIBRELE

Rl MR B 5 T IS B 2 D1 A TR A B S AT R RR 92, TR BHE BFR R 264 T, IRAR BB A H B %18
R RE IR BEA T I8 25 A PP S WL AR 28, IR KT VL3R T B AEARAR VR 3 55 T 1038 LA A ] i R A2k,
R T X TAT A R EL R RE .

AR CBM 7E MR & 8 &4 PRI PR RS R B 10 1) B, Sawada %8 A\ 4R T CBM-AUC, %454 T 164 CBM 51k
1L JE 1) SENN 544, DAIRI 2% > W B & 5 0 W B NS, 41X 5L 4f SENN Zihth 25 - 0D 2% 45 R 75 AL BRI UG I
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THEARZAR T ), /E#121H T M-SENN 2884: 152, FISE 88 B RIS 38, YISk H ARfe N i KA N B 5 i)
FRIEI A B, B AL G AR 22 B ARRS 22 2] AR F2m; BLk, SINHh [a) W 2 L L, Lh i 38 5 S50 28 3L
PR SR BB, T AT R F R S O TH R . CBM-AUC £ 2 AME S BRI T 5 46 CBM Al SENN
R, HLBIT Grad-CAM A4 A3 AT, BRI T A5 24 e v 3R A 18 SR X3, T0 102 B0 2 T I B At .

At Sarkar 25 A 5 H T —FiE FIHESY, AR E BRSO AR AT RIR FE 4 I 4 AR T . %5
=R Gnt B8, 515 ARRAE AR 2 >0 FH A R 20 00 F) 338 SOMER, O & 3 e 1 0 AR L B A AR SR R4,
LI S R 115 Bk 3k fy 5 B sz itk 7 CIFAR-10. ImageNet. AwA2 F1 CUB-200 &38R 4E b, %07 AR
T SRR SRR 2 I HERR R, RN AR T B B TR R, B B AT B 7 5 R
2N ILER, o T R A k.

TR 5T B TR B B4R B 7T AN [F], Marconato 25 A MR H1 Y GlanceNets W] i 7832 THIE & % 7R 1 B
S EHE. ZTCR A R B ARAE G RID A, SINBRRR IR 2 ) 5T R IR BIALH], SRR = 2
T SN B RE 7. DR LR R IR vl 0 (PR 2% 5] 3 54145 0 R O 4, GlanceNets 7E MR B B A5 Bh
TR R T WG, B RO BRAFE AN ZR o AT NS, 3R TH T 0 w] Sk, e Ah, %7V 2 G BORLJE, BRIE
T 5 B E 2 e B IR, OnTEd 2 e U M B 3G 5 S — B AR B vl R .

34 ETERBSHEPIERSE

Bt R TUTE S R (LLM) RO R i, FLoF & A3 5 SO A @ 352 S 00 T 9T T RETE. Yang 25 N1
$2H 1) LaBo (label bottleneck) # B Jix — J5 [l AR M TAE. Wl 8 Fiow, LaBo FI A GPT-3 Az s M i 17 SR
&, I R BT SRR AL, M BCE FR D SR . BRI e )RR AT S R
A, FRI FITRI 250 2 BEASHEAY (4 CLIP'™ ) K5 B (5 R SCA Wi 28 524 S il AR 38 T AR R 5N GPT-3 42
AL R B A e H B M B B 386 1 3 M BRGRRAE B A5 20 I i B 5 8 28 1 ol B M 19 0 i 4
NERERER. AT END M. MR WA, shfE. S8, ERFEMTEERGSEILT 11 DMEEE LR,
LaBo 33 87N 7R /INFEAR 5 1F AR 4% Gty Bt AR 2R (1) 1 B, IR RFEAR R B IR R IF 524 0, ROL T KA 42
T T AR P P [0 o S o o e P P05 7.

Prompt: Describe what the axolotl looks like: Concept space E R Test image
LLM: The axolotl’s limbs are delicate, and the tail is long and thin. 4 k-
Extract concept using LM and delete class names: | S
Candidate concepts: limbs are delicate; tail is long and thin Text encoder
Class 1: axolotl t : v
S, F Cl,1 Limbs are delicate Image encoder
k concept Tail is 1 hi
LLM Candidate Submodular p CI:, 2 Tail is ol?g and thin
optimization 2 2
Cl, k Gills are bright pink x €R?
Class 2: red panda
5) F C2,1  Thick, soft fur Concept scores: g(x, C)=x"El € R
k concept : — - - (1, No)
LLM Crkiio Sul.Jm.odu.lar P C2.’ 2 Rcddlsh.bmwn fur fe
optimization : : :
C2,k Ears are also red W e RN<Ne
Class N: tree frog 5 E 5 5 Class-concept Dot
weight matrix |Softmax] product
Sy T CN, 1 Toes are long
k concept
LLM —»Candidate —+>5 omoouiat “ O | ONED) - Greenbody EE TN
optimization g g .
3% CN,k  Smooth bumpy skin ¥ =argmax(g(x, C)-o(W)")
N classes Generate concepts Select concepts Bottleneck-C (N, concepts) Predict the label with concepts

8 LaBo f5i7 &y 1o

5 LaBo 241, Label-free CBM“? 3R Fil GPT-3 [ 8l A4 Bl 4 4. H 7 VA8 et T2 44 7, I $R s A
S SR IR SCAR I SR AR 5 Bl R 0 — R A e AT B &0 i, sl BT KRB LB ERAIE T
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PR BUM LE R RS BRI ZREE th A E WA B 4. Uik )a 42 &g CLIP-Dissect YIZR3R1S M
LT P SR B, 30 I A A i L 2 58 R 2 G 2R AR T VE A AR T T RSB R AR L, RN R R PR AR A
MREOTERE, HE— PR 71 R T MmN 5 rh A A A (A A T AT

5 LaBo %52 W B Ak BE () SCASME &K 2 05 AN 7], A< R A3 HH 1) ProCoNet!*™ 76 SCAAE FRIR TSI T
J£F in-context learning (152755 SN, {5 B GPT-3 FL4% A il i B S AR U0 J R PR SO 12 SR T = A M K 3
fift i g IR, A RERTT T AR OSCA IR SR 55 R IX 8 [ Bl A2 1l 10 SCAR R 3 AN S A v o B2 AR 2R 1) 8 A AR
o SR, SRR R BERS (R I e e B R AR A 47 (LB Z 1) S BATA” (16 5 R ) AR AR, AR AR H 22X
HIIG B A KT, ProCoNet #ist i oy — Ml & W ot J5 5 15 78 5 BEE00S 5 (10 2 AL T AoRe BRI HEZE, s
TR 3 AMZLFRIR A A MG AS ] BT R EEE 5 B R UL, 25T ProtoPNet 22 R, 2 [X I AL 0 i
B SCARE 22 1) M GPT-3 H AR i BAT WUSE AT YU 43 PR AT I, JFIlId CLIP f)SCA S i) 4 MR AR 22 N
) 2RSS IR CLIP BERLER BRSNS 5 RE 0, AR ALOE 5 SOAR Z [ IR 2E. ol TR SR 2 5 50
AL RN HIR A B 58 S, R 60 A0 6L T AR B3 (manifolds) . ProCoNet ££ Stiefel JifE2_EAEALH
SEHERE, I Cayley A8 Rt Wl ok J5 2R B RE 28 20 A28 23 ) v b5 SCA M 28000 5, RTINS (R4 L JR) 38 L AT &5 4 PR A 8 1.
KB AR T T 1 SO 51— B, 3838 G 1k N AR SO BB B G BT (A, AT 38 56 1 A g T
fiE R S5z A RE

SAORE, H PRSI A R 4 2 i AR M R, AR B i R R AR AT AR SR 2R R AR
HAg @R, AIac AR 15 SO A R R S, A P AN AT DLBRL AR BT ) 0 45 2R, 38 REAE L& )2 Th 3k
AT HR S S Se B, S T 0T R AT S LS W R ER A (3 5t SR, PR R A7 A Tk
W B Y, N T ORIE R AR, SLA AR AT A2 BIRR B, T RERINE — e TR RE, JCIAERIA R 2N 52 IR ik, 55
JE R TTVE AR L, S I EAE Y R B S S5 A S AL, 0 T SEBE o T b R A K, B
TR P A A P A B, i AT 2 o B i R BSOS A I Bz AL 7 oK. BRI, A8 S S B R AE SR T 1 &
D5 T B B A%, T AE R . YRR S A RE T Z 1B SEBLSE AL -1, 2 AR KA T 25 ).

4 WRERMEAMRETMTIA

N T RT3 TR B0 R AR N TR BETTVA R R S S, B AU PR L T 2 A RE VA SRS XL
TIEACH T i B R R ) SR AN AT (5 L, oA B T B S S RRAT N Z BRI R R MR, DA IO T iR
PESLEVRA BT RI sE EfR AR . R B PPA.

4.1 FEMETEERR

SE PEPP AL B T8 AT 5 N Do 77 5K, AR R R 15 R a1 SCIE T IE . B — Bk 5 AR B
TR g X S AN R 1 B R T R R AR I LU S B S I R AR, T
RV FT P AN T BIGR ) B EEIA Y

(1) JEAL /BRI AT AL B, 72 JE AL R 4% (4 ProtoPNet. ProtoTree) HH, Hff 71 7 i 48 o i Pl Ji 2 Pl 4%
patch AT 22 5] B IBES. BRI 21 1 A2 FF48 e T, A Bh T4 X 8 J R R 75 At — 3
(I BEARFALE. 120, B SR 2 A G (1 S R 0 #4000 2 5 SR S, U P i L6 — MR AN T R L. 10 TCAV
ST P v AR A ) v SR X R AR A b R B U, AR B U R RS ) B X
S, S IR AT AT LA A0 T A TR X3, A BT VA A T S R A R —

(2) NTLVPAR B2 3T NS00 N1, SR8 P BRI R TS5 A il O R 2 2 75 45 R BT 4 15 3L
ROV ELDWL R P RRENE, 2T LAy N Lan 44— 3, Al B IEPE oy . 8 SO, N w4 — 8k
ALV 0 E SIS HEAT i 44, Geit i 44 10— Bk SR AR DA B A0 T8 SO0 L. AT BT 20 33
JUERIUE A SO RS AT R . B BN S IR AT 20, B AN B S R RL. T SO AT IR
T BT A IR A A TR R] — M i 1 0 — Bk, B R B kR T — 2%,
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4.2 EEIFhIENR

SE VPN 7 0 8 T DU D 20 T AR A Y R RE I B RIS ST 4SRN, 2T VAd Ak A Y
rRE R FRIEAE S B B AR T MRS B M, X Ry B ] SR A B, EEAFELLT L
AN FBRYESE .

(1) HE&HERGZ ). 75 CBM 25 0 2 B SO & AR oy, A8 v 1 B2 P 147 B R o () J2 438 SCARE 5 0 T
WG B, A2 DPAk N T AR 2 11 B LR HE A i B AR OB PR B NE S AR S I BRI WA TR o) Tl SN 1Y)
ORI 5RGKE. B & TR NS R 2R BCE BT A R, T 2R NEE, R A 0-1 R B F1 734
AT G B BB B M (i, TERES) MR SR X T E S RS, W@ & (¥ 77 iR 2 (MSE) 513
FHRIRZE (RMSE) Sfe 1 5 A% R 70 A A3 58 000 o 1 ZE A2

(2) WAL s 7 B 5 B 238 hm T T A 70 v 2 3] B O M A 2 75 L 45 A A O Bkt S, A 75 v s o
BIG I E SCER A, ProtoPNet 55 51 20 o 28 o] DAT 2 W , e ot v P o o K] iAo B K(b;"’) 5 I A
i) landmark {37 & P(b;")), T8 H 5 E 52 landmark 22 7] ) )3 — 4k WK FG PE B8

P(bY) = k(BS) - Gjump + Occner

1B —P(5)IF -

(3) MERTUAEPY: M TR FE M B A& 2 10 FOARULE BB AT, F S S0 B R 75 77 4 2 A JR B R ik M
[EJE S 1) . Dk G AR B 252 5T 22 ANE XE SIS, SINTURZIRHF p© KR A & WM. £ %
MRS 53 BE A [/ — landmark, WYCHAFTETTAR. TURHEE X WIT:

#unique predicted landmark

A

p(c‘> =1
#prototypes

Hor, ) B, M 2 6B O A R B TR 1) Sk S R 2

(4) W& 53 2 T AT AR : 2 T 9 TR0 1 A4 MRS O, VP A o MR A2 75 220 T S R £ B 2 T 7=
P S, A T AR O L . S [ 5 AR A : TCAV 4050, F T AR ot 5 — M i1 T
TR s CaCEP I Mt J S S RE AR, 5 B A0 W7 A P28 1575 % T 45 58 1 DR S50 ConceptSHAPE™, % 7710 3
T SHAP HEHE, P4 65 AN 2 75 TR Hh v (0 10 R 50k 3o 07 35 IS ) 4 B4R 7 RSP0 78 i et P 2 35 I
““fhi F 7N 2K R BAR IV SO L AME AT — S8 bR T LR A& F 0 2 75 45 B T4 AR 280 1 A TR P 2
RE . 3 TP AT SE: M 5 51900 P T M T 25 07 % KRR L B SRR JE A R (1 e i, R P
T R TR TR 7 VB L 75 A 00T 5 A f i o

(5) WA AP TL 026 5 TEMDEIFTT Y, W50 230 M8 LA 10 S I SRR 0 550 4 43 DLV 7 B
5 2 v AN T 5 BRSSO 2 1) IR 57 55 5. 3 FIRVERG S6 R ToU, I T 56— M 2 0 0 X B0 5
VSO R [X 3502 16 () A PR, AT AL i 2 TE XA S MR A ) B R 53 i B 7. A RFeik T
D IM)NL ()
> IM UL )
o, M, (x) FORAEBL x 18 K ANIZ TE TR0 T EBOE X I L, (o) FR B x L TR ¢ 1R 2 B0 U
VEHER.

(6) MR ARRE I 5 etk : R M9 P VT A 3R, AR BE . ToU %5, R e b5 28 2 T R AS W £ 12, 0
Tt B ARRALE B30 50 2 YR o (1 TR — B, e 2, S AR A1 (R R S, 12 T R
FIRLI—, A R I G IE R R A TR A S (BB, MEARE. FE& 7005 fEH X ATz, #
TR R B A A L (R . A St

Robust (x,x") = sim(e(x),e(x")),

Horp, JRAAHIA x IR AR (R ) 08 e (x), UBIHIAN & BIRREFT RN e (), T sim H R ZAUE.

IDU/(_C =
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(7) LA O PP HELE: AT AR B MEA R 2 — T N TZE (45 R . T TIES (meta-predictor)”” HEZ2KE A
BT UPs A IR O T R PR SR AR MR IS, B S AR TR B (1) )5 24T R B B R A AR (1 SE AR
B, AT RIIEE T i L5 ). B Ak, @t DL A SRIE MR N %A F B — A Utility-K 18:

PO (x) = f(x)

Hdr, 7R K AW R IFEAR LG, NEFTREAS b RESE A8 &5 2R, 4 B3R R 58 AN E MR 11
MEH, NFEXT INEZE LU >1 g Ue B AR S BN =1 BB <1 RO BE 22, SES0nT K B2 /ME, HH Utlit-K
Mk, A4 TR (AUC) 1538152 Utility 730 fEZZET 1150 2523 E IR HBLO B B 2258, 75 3 N A
SE R RS T FIRIEE VAR, 45 R — 3R A G RS R AR 5 ARG SE BRI RS 2 (/] LT
AT ROREE.

JE COH Z M br ki B2 A, (RS E w0 ] MR VR Al R R AT T 5B R B, PEAN TR AR ZHL
TENAG—, HRZ AR E BRI BT 5. RRBBFHERHELRITAE RS R — PR R, DR R
A E A AT AR RS Juxt bh, ORI TS . AT RE R G0 H T IR Se 5L,

5 RERRESHEK

G T MRS A AT A RER BE 2 2] TR AE SR TH R (8 S W AN S AT B Atk 75 T A 1 1 22 0t g, (ELiZ A0
SEATI AL T PRI R B, T 22 77 T Bk, AT ) R RV 7E 2 TR AR AR AR R BT TR E . RS
RS X T R T WO S5 77 T ) 73 22 AN AL 9 1 HES AT AR PRI U R B SR AE [ R G K, UR LAY
[E AT R AR A AR R SRR ) S SR A2

(1) ¥ RS B M (0 SR A . AE B SR BRI S op, AR 55 5t T 277 ), B 2 IR 2 S A A =
IT AR B IR I S B P I R GOR ZURFAL ;1 20 72 T U 2 [ I e A5 5 AT R -7 N - A )
ZEEMEIE L. CHEAMSRE . BRSNS FIE R EOR H AT R TR A T R R 2K, K
TPIAE SO BV AT i N, — BB [ R %37 5, A MR AR R M DL 53 R B i B X, ST vk B a4k (o
COVID-19 SAARRFIERFEEAR 5), S EURRE B DR, DRI, o 75 440 S 106 M A A BB A1, ARG B B A M
B2, IR AGHOE B Bh AR S A T, R N OB I RO, it — 20, TS W A K S B ——E R
HH 5080 SR B 2 AL P2 R 2R, TS e K1 35 AR SN S D N SR AT R R SUARAE, T oy 2 7 5 RN P B g
JE 5 M SRR, B o0 A AR BB SR ORI, R G E B TR RO . AR R, S IR ah 2%
5B 5 DAL

(2) ML AR R T PR WF 70 i ARr SR 224 T ) AR N R B v RO B AR 0T 7 i i B RS, 5, #h
00 24 7 R )3 45 ) 2 ) 5 NS B A LIS AR B BSOS 5 1 3R S TR AE XE LR & BRI R 8 —— i 5 2 T 4
HUE A, 5B RABEHICRT S HERE, PIEAEZOR U AR EAF A BT 22 5. HR, BUA B TSk Z 0Bl A
JoE R 2 R, KR A 45 B AE 58 ProtoPNet. CBM 55 Y ) TR AL chuidk, 2 /D38 il W 2 A2 DA K12 T B9 BCIE
WL e, ShZ 48— A BB HE SR 2 STt WML AR, BN [F) 75 2 1) M DA LR A, e Jot B PP At s = %5
AR VHE . B AR — X 5 B MDA RIS 55 ) 1 T o AR A AR 1, A% 00 S BR R A PP 2217 SR, i 5N
SR o < J B U M TRV T N M i O R S5 B SR BRI I G — 1k BATTT E,
AR EE— A 3 RIS FBHE S : SRR 2, ZU R FE W 48 o () 20 A 2URFAE s, 38 3o 5 44 i 2 1) S P i N A G
AR M SR, @ERM AR SRS M1 Th RIS R, SR A EE e ) U 4 MR R
N R R B R DX, R e RS I X3k, 3 S BB PR ABORA A1 A BE AURE IARBR AR R, X RS

INFNEEA, B DR S 5 NSRBI AN & AR R K — B AEHORSEHL B, @A B R B R A A F R [ (5
SR I B A R, 18 I H0 A U] 2 1 A 4 s 8] P 4R34 L S IEPE R AT 4k, S S AR L B
SIS IR UL & 70 JE I AL A R, MO DR R R B B P I, SR NSRRI,

(3) RSB S E S XTI R 7 e % . 2RSS @ i Iy 2 kAR B e, B R IE T B R R .

Utility-K =
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