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Abstract: Adversarial training, a key strategy for enhancing the adversarial robustness of deep neural network (DNNs), has been widely

studied in image classification but lacks sufficient research in object detection. Traditional adversarial training often relies on projected
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gradient descent (PGD) for robust optimization of models. However, the iterative process of generating adversarial examples greatly
prolongs model training, becoming a major bottleneck for deploying adversarial training in computationally intensive tasks like object
detection. To address this, this study proposes an adversarial training method based on Nesterov’s accelerated gradient (NAG). By
introducing the NAG momentum mechanism, algorithm convergence is accelerated. This method maintains detection accuracy comparable
to PGD-trained models while significantly improving adversarial training efficiency. In addition, the main difference between object
detection and image classification lies in object bounding box localization. However, it is observed that existing methods still focus on
learning adversarial examples generated from classification loss, while neglecting the particularity of localization in object detection. To
address this, an adaptive loss re-weighting strategy is designed to balance the number of adversarial examples derived from different tasks
during training, thus enabling the model to focus on localization to enhance robustness. Experiments on the PASCAL VOC and MS
COCO datasets demonstrate the effectiveness of the proposed method compared with existing advanced adversarial training approaches for
object detection.

Key words: object detection; adversarial training; momentum optimization; multi-task loss
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BN WGFEAR ((x, (by D)) ~ D, BELIZRIKEL T 22205, heh 1z e
i 0.

fort=0to T-1do
form=0to M—1 do
RG24 (12) T HENAE o
fork=0to K—1do
% F(x) = =Lioerr (fy (X1, {b:})), HRPE A = )] i ELO:I
2 F(x) = ~Laar (fo (e le), RAEAR ®) TH5 %,
end for
¥ = Lon (o (%55 b)) > Liw (/o (X2 11, c)
X=X +(1-y)%
0=0-n-VoLir (fo(¥,{bici}))
end for

end for

B L AR SCINEERREXS BUN G 2T 1 s, FC s R RO F5 1B FE T BB O(MK). N T it —2
Eb i SV A, BRATTIE LA B T AR S IR AE R B Bl A = R AR AR NAG-LR-free, B AR WS IE 2 Fiow.
NAG-LR-free 7E 5 X BRI A 75 B AR FETH S B FIFEA O(MK), (H AL EE NAG,¢-LR-K 1 1K, [H1k
SERRINZREER 23 NAG,,-LR-K SE 5.

B/IE 2. T NAG B B &R AR R EANBL T H ARSI G 30 5T 250573 (NAG,qy-LR-free).

N WG (e, by, D)) ~ D, BEBRIZRIRBL T . 215 q, hB31FER e
i 0.

forr=0to (T -1)/K do
form=0to M—1do
M~ (12) 1 B IERNAE o
fork=0to K—1do
% F(xi) = =LiocLr (fo (X1, {D:}))> FRAE A )] it f}co:l
2 F (00 = =Laar (fo e (i), RIEA R (8) T X,
¥ = Luw(fo (B0 1biet)) > Loe(fo (B0 (1))
X =yx +(1-y)%,,
0=0-n-VoLir(fo(%,{b:,c;})
end for
end for

end for

3 HESE
BB H P AR I FE R U SR A BRI N T SRR A AR R, T, SO AR R T VGG6
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BT W45 BB B 2 HERE I 2% (single-shot multi-box detector, SSD) _#E4T X Hi € #1456 IF .
3.1 SISHIEE

ASCHE PASCAL VOC™ I MS-COCO™ AN A T H bRl it 45 _FEAT5056, € 1 50 T RS i i 4nfs
B 1€ PASCAL VOC _EJF J sZE6 B, SR FFRAEI«“07+127 I ZREGIESE (B VOC 2007 trainval 1 VOC 2012 trainval)
WL, T VOC 2012 WA S A st Pkt A By 6 75 BRI SO, BRIAE VOC 2007 M4 (VOC 2007
test) AT EMMEVEAL. 7E MS-COCO T g sig i, KA COCO 2017 JIIZ-4E (COCO 2017 train) YIZRHEEEL, 7E
COCO 2017 B&IF4 (COCO 2017 val) _EHEATIEAS.

®1OSLRHEE

B AR TR FEAR S S E e
VOC 2007 trainval 5011
PASCAL vOC™" VOC 2012 trainval 11540 20
VOC 2007 test 4952
COCO 2017 train 118287
) (421
MS-COCO COCO 2017 val 5000 80

3.2 M iEtRFIRTEL B

A F R H b AR A 5 BT 28 B (mean average precision, mAP) {E AN FEFR, H P A IE L BME
9 0.5. 9T PN BRI R A IR BRE BT, T R AR TR R L0 mAP 8, N TSI B AR, 15
RERIE BT BRI (Age)~ BT @M RIIBE (A) FIET A BHE (class-wise attack, CWA) iX 3
FRAS R P HLBCE T B mAP 8. e ANE 51 NAEEL YN ZRET TR AN B Ari IR AL 5 I SR B

%of He S A4S F i R 2 BT SR IZR 00 SSD. 2 2BAE 5538 S, b HEAT X HTIIZRIY SSD 2844 (SSD-
AT- Ay~ ERAEFIH S, LHEATXIHTIIZRE SSD 2214 (SSD-AT- Ay ). [RINERI 1 — F A5G HER) H st x4t
W7 IEEAT X L, 3G MTDP, CWATR" 1 RobustDet™ . 730 132 7578 NAG,4,-LR 7E 4 2 R AE ST P 2k
T HIRA S 514 NAG,g,-LR-free Fl NAG,4-LR-K, Fitt K & NAG,q, KIS
3.3 SKIGYATS

AL SRS T 5 SR [28] PRFF B BT A BREME 22 I 2 8 0.001. BE RECKN 0.9, BUEZEREZEN 0.0005
I BE HLEF BE R [% (stochastic gradient descent, SGD) Hyk#EAT Ik, £ VOC ik 5 LRIl 1B T=40000,
£ COCO R 4E ALY ZRIREL T=120000, [FII &5 7 FAZFIVE A6 FE VI GRAL. ISR A 1 BE R SR 300
300, R = ABTE N [0, 255], FEARHE SR 4 3T IR AE . VIGRREAR T batch size BB N 32, FRHLIRIIZRATHEAL
I A 16 AN TR A B PURE AR, F5 -5 0F BT PR A B8l — SR I NI 25, Pt 1 v e Ak e
AR A2 BTG 55 Y5 B3, PLBh 42 e BN 8. AT /732 1SC AL T NVIDIA L20 GPU. Ubuntu 18.04.6
BEVER YL, Python 3.9, PyTorch 1.13.1 F1 Torchvision 0.14.1 ZE3K i 15 it
3.4 SLWERS5HH

AR S S ROCHR [28] ISR 5 I et XS BTN ZR o vE AT XS L, BT MTD SR A PRI X S Il 2Rt
3, CWAT F RobustDet K H 5 3¢ 35 PLll Gt s, SN A2 I, A1 5 FR B8 TR 2 ) NAG-LR-free
HEAT L. 7 PASCAL VOC 2007 MASE EVPAS 4 FE AR RS . Eolehs B LA R0 LA AR (R I ZRiet (], 25 S an
% 2 foR.

M 2 HAT L, ASSCHTHE R NAG,g,-LR-free JULT-ANH K TEHERI 2, H &M GEAR I X Lh 502, LE RobustDet
RIFT 5.77%11.74%. RIS A1 518, 5065 Lo R AR L VI SRl B, etk G AR S i 1Y) SSD AR 2 )1 538 Jim i) i)
[HLE AT B2 Ja Rl . 7E COCO 48 145 SR RIREBAIE T A S5 v A sk, ke 3 o,
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%2 7E PASCAL VOC 2007 R4 b xF EL L B T RE AR AN E 8 mAP Al ki) 1A]

. mAP (%) , o

Bk T YIRS 7] (min

TR Ao Aroe CWA (i)
SSD 715 1.8 45 12 736
SSD-AT- Ag, 46.7 21.8 322 - -
SSD-AT- Ajoe 51.9 23.7 26.5 — -
MTD"! 48.0 29.1 31.9 18.2 -
CWAT?! 51.3 224 36.7 19.9 -
RobustDet 75.4 415 452 424 1462
NAG,q,-LR-free 75.39 4727 56.94 48.81 1481

F 3 1E MS-COCO 2017 BE4E b Xt BRI TR AR G5 mAP K I 2RI [A]

. mAP (%) , o
i A Ao, Aoe cwa | VIRHT (min)
SSD 42.0 0.4 1.8 0.1 -
MTDP! 242 13.0 13.4 7.7 —
CWATEY 23.7 14.2 15.5 9.2 -
RobustDet 36.7 20.6 19.4 20.5 1458
NAG,4,-LR-free 40.3 17.1 23.6 183 488

NE— 3P B UE AR SR SR B I AR, FRATTEE T H AT Stk ) RobustDet #5824, 73 BIFEPSE N L IZE (FGSM)-
G i Zk (PGD-freew NAG,q,-LR-free) AIFRAEST HLIIZR (PGD-20. NAG,q,-LR-10) 1X 3 R il T4 4
AK TR P R RS 2 T I AT A T s, FRAT TR AR A BN R B SRS B T 4553 5000, AR A, 45 5
W 4 P,

% 4 f£ PASCAL VOC 2007 MIRAE A EVN G R T REA A S48 mAP Kl 2Rkt fa)

N mAP (%) ‘ o
Hik A A A WA YIZ5ET 8] (min)
FGSM 75.92 39.38 49.65 40.81 1459
PGD-free 75.4 41.5 45.2 42.4 1462
PGD-20 76.39 30.37 38.75 31.88 2343
NAG,4,-LR-free 75.39 47.27 56.94 48.81 1481
NAG,q4,-LR-10 77.10 41.55 55.27 42.99 1189

S 2% 4 Hl R YOH R B9 PGD-20 1 NAG,4-LR-10 K, NAG, 4 -LR-10 AU BEIRTF T EMHE,
PGD-20 1= 11.11%-16.52%, IR [E] M 2343 min FFE] T 1189 min, IR 1 £%, IKIGIE T /I SCHTR i@ 9%
b PR A IR B R 8 G R I R R N i R [R) BLBR B TH B WY I FGSM. PGD-free 1 NAG, 4,
LR-free NHER I, L& FGSM AT M P Ll ZRFEmt 5, (5 B T80 xd B — itk EdE 2 b it 2, 5
SFIPERELE PGD e 2 B 2K 22, 1A LI NAG,4,-LR-free 7 ARIEAR 24 2555 B A T35 RF ARG B (1 R I, BE
515 B e v PR BB B R

BATH—BAETREEAR. BT HRBOE R TIREA . BT & B rxt Pree A L@t m ik i s e b 7
AEE#E 1 SSD (SSD). ZE T PGD-20 XF HilZ5: 1 RobustDet (PGD) F13E T NAG,4,-LR-10 XF Tk RobustDet
(Ours) IX 3 MR FRRTINEE 3, a2 B, AT LA H, 3 AN B AE T RE A _EHERRIR S B BT A 10 B AR An
U FHE, B RAEXHUREA R ZE R BOR, Horh, 68 SSD H 3L 17 7™ 8 1) 58 S HETH S A o3 S i 5 ) L ik
T PGD-20 X HLll 21 RobustDet farill 25 545 2] 1 B2 o8, (B2 UM W T 85 E 1R B bx, HAEREE D&
FrERIMEDL. FHLC R, ARSCHTHE 712 Re 8 oo IR 26 0] @, TE 102 75 T3 FEAE 2 X BURE AR L ARIS B 1 e A
e
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A A A TRk A A

SSD

PGD

Ours

2 SSD. RobustDet FIASSC AP I ZRA5 R [l 45 51

3.5 HEASCIG

AFT AT NAG 7% (NAG,g,) FIFR BN (LR) ST AR R M. &5, AR SRR, 75
G T HUIN A 0 AT VAN, 25 Rk 5 Fios. 78 TR AR, NAG 4, -free #H L PGD-free W& fl 44K, (HTE
T 2SR BB T I3 AR A IR AR T X BN NAG,q, J&, F5 TR 7 T 56 3 S0 5 Ao S o I (14 675 7 g 7 4
3. [F R, £ NAG 4,-LR-free FIl PGD-LR-free (1%} EL 8 ] T NAG 4, A B T2 MR E B 5 T )
Fr il v e, T L PGD-free 11 PGD-LR-free &I, BI#I&H NAG,q,, LR AR AT S s PE R, 348, XTHE
NAG,q,-LR-free Fll NAG,q,-free, 7] LA H LR BIIINS45 3 2580 NIRRT 5.18 N H 73 5 (A 42.09% I
47.27%), ELLTE NIRRT T 4.2 DNE A (A 52.71% 2 56.94%). X 1B NAG, 4, M LR Z [AI7EAE 7 [F)4E
F, EATTRE S AR LA 35 M B R B AR e N P RS S S5 A R R U GRS DL B BE T I,
NAG,q, F1 LR 51 NI 008 2D B I S [ A2 5 4 ] 252 (1.

# 5 7E PASCAL VOC 2007 Mlit4E EXT NAG,q, 1 LR FJH AT 72

N mAP (%) R N .
Sk ERT Ao e cwa VAR (min
PGD-free 75.4 41.5 452 42.4 1462
NAG,,-free 75.38 42.09 52.71 43.87 1481
PGD-LR-free 75.43 43.46 48.54 44.20 1468
NAG,q4,-LR-free 75.39 47.27 56.94 48.81 1490

ok, BT ARG E (T) VAR EE B AR (K) X 15 1 0 22 A% B & 0 1 19 52, 12
PASCAL VOC 2007 4 £€ - XF bt PGD 1 NAG, 4, TETH#FEAR, EAHRLGE . B8k Bk fl CWA Kt F
FIRE IS a0 3 B, B 3(a) HHAT I, K32 NAG,q, FESE PGD Y 45 RIS BLLE W BURCE T4 F Bk 2 A 18
WE AR B I T 48 =1, 35000 A0S S5A B E AT BT, 1440 PGD AR EUR W, BEMIE BIMA STk
AR HERE. X BI7E T (1) ARSI SRR /e 3 1 e 0 BT e N BOHER R a2 B B L TR 451, (2) MR
KRBT, KO ERRR T %S 77E, B e DU FE AR BUE R M e ik Blfe0E A, BRIk 5444 528, 4
AR E] TR . AN 3(b) FRR RN, ARSI K H FIRE RS AR RS R 2 IE M SRR R, HEARA S T
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NGRS AN

RV R A A ORI AT KN 2R R B, FRATVAUSN B E T 7=200000 (5 15 JEFRAE I Z5IT [A]) E4T S8
¥, G5 RUIE 4 Pos. AXEE H, I SR80 0 A0 % TIOAS: JNA P2 AR Bl A A RIS e TR, 0 9 B ) 0L s 1k
REIRML S LR A, RIS A 4(a) AT L Y, BRLFE 225 20000 A0k ARIIZRG, $2% h4AN P 2 N B, SRt
I 2.

0.9 0.9
—o— Ours-clean —e— Ours-cls —e— Ours-loc Ours-CWA
0.8 | =~ POD-clean o~ PGD-cls --o-- PGD-loc PGD-CWA osk = Ours-clean = Ours-cls = Ours-loc = Ours-CWA
. .
@ o0

0.7 0.7

0.6 | 0.6 -
a 051 a 051
< <
Eo4f 04l

03} 03|

02} 0.2

0.1} 0.1

10 15

5 20
S S RIE (K)

S s T s s e :
O &8 ’\9@ qﬁQ %QQ %‘)Q S
BRI (D)
() ASLIEL I 5 PCHION R RS FEE R0 (b) B3k A ARG IS E 52

3 BRI ZRIKEL (T) SN S AR EL (K) X PGD ANA LI 12 T il RS 28 e kS B2 il

3.5 0.9
— Ours —o-Ours-clean —+ Ours-cls —eOurs-loc Ours-CWA
3.0+ 0.8 1
0.7 |
25F
0.6 |
oo} Zost
X 15 €04t
10} 031
0.2 H
0.5} 0.1
ol v i i oL

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
S S S S SSSSScccsSSSS888 S
S SS33S33333S535353535333383
R EEEEEEEEEEEEEE

n R 2R S

___________

RPN LRIREL (1)
(a) BT RAR AL 1 2k

BN ZRUCH (T)
(b) AR A I L AR Ak 1 2

B4 KIPUIZRTT BB AR I R0 R RS IS P2 A2 Ak 35 15

Fihbh, WATHE—PHT T NAG,q, M LR ZEARFEIEAIKREL (Ke{10. 20}). RFEFHELE (PASCAL VOC 2007,
MS-COCO 2017) L@ r fy FEFEH, 45 Rk 6 FiR 7 Fios.

M 6 IS 45 K, NAG, g, A1 LR 5 REMAL IR = A [ A AR BB R S B AR B2 ZE A N LR 1)
UL N, NAG, g, BETTE L 172 VIR THIE )5 PGD AH 24 (M 1t B8, I3 NAG,q, f1 LR & He85 B i i,
WE T B — e M RIVER. SR 7 STVELE COCO iR &N sLit 4 Bk A, NAG 4, MEFEMEIRF BURZE L
LR B R, HE T HE 2 A fEFE R (NAG,4,-20 LT NAG,4,-LR-20), X A §E /& COCO Hdli &b H b R JE
ALK FE. TN AR, BT HAERE 5 N, B EETEEOT REAR R 85/, LR BEHUOR P A AT 25 ) 45 2k 22
5, 2R RO BURE AR 16 B R AR AT B4R T 5 5 X 3 (K H AR, AT BEAR 7 X /s B AR K 553, AR, NAG,q, BT LA
SR SN [F) RURE H AR SRR FE R 22 5. —J7 T, B vl LLERF/IN AR/ RBERREE, X B 75 0] /s B AR 2%
£, T AR RN /N B AR S MR RRAE (K5 20 . R, X6 T K B Aw Al (0 R RUBERR B2, 28] DS SE 3, b S i Y i
FERLA K H bR 288 /N H b
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%+ 6 1£ PASCAL VOC 2007 JREE_EXFANE K 1E AT NAG,q, F1 LR F7H @ 7T

. mAP (%) . \ .

A7 ERPT A A WA YIZRI 8] (min)
PGD-10 77.21 39.44 47.03 40.27 1165
PGD-20 76.39 43.72 50.53 4391 2334
PGD-LR-10 76.58 48.54 51.12 50.38 1167
PGD-LR-20 77.19 49.43 51.92 50.04 2343
NAG,4,-10 76.95 42.19 55.52 43.97 1189
NAG,4,-20 7721 4470 56.61 46.21 2377
NAG,,-LR-10 77.10 41.55 55.27 42.99 1195
NAG,4,-LR-20 76.90 49.84 60.47 50.93 2391

# 7 1E MS-COCO 2017 BGiELE_FXAIF K BT NAG,q, F1 LR [17H @

. mAP (%) . b .
Bk TR Acts Aloc CWA JIZRITIE (min)

PGD-10 40.64 1.85 8.09 2.35 2186
PGD-20 40.50 6.96 11.88 7.52 4378
PGD-LR-10 40.42 1.79 7.98 2.05 2253
PGD-LR-20 40.68 11.05 13.71 11.18 4517
NAG,4,-10 40.48 13.46 20.81 15.23 2189
NAG,4,-20 40.46 16.50 22.24 17.48 4510
NAG,4,-LR-10 40.82 16.31 20.46 17.24 2259
NAG,4,-LR-20 40.35 15.34 20.23 16.56 4525

4 B %

ARSCER T — P H ARSI BUUIZR D53, i 51N NAG S & iRE Ui R oA i A U8k, ik
IS PN ZRRIRCR. 73— T7 1, EZALSSAK B AL L, PO seit 1 B S N X 52 AL A7 SR R BEAT
IAL, SEBL T H ARSI RL E ek (3R T, A S0 24 2UHE R UEW] 1 TR 757 5 6 NAG AU SIE AL D, AT
HESLAR AL BRI 5 0 S R L S 5 Z IR IR R R, X2 — R A B 2, JF HAE SRR P S 1 B PGD
FEHFHIROR, Wit — Bk T 5 &R R A B W SSOR A R R s B, Ay Bl A ST T, e g (e st ib
AU R B 2 St Ty ik R B LA A W 2 X DI, JUHAE B AE H AR AS I ST LA R O 55 v, DLBR R
RUGRRIE. BRIRTHEIT4H.
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