RAE2EHR ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn

2026,37(4):1560—1574 [doi: 10.13328/j.cnki.jos.007527] [CSTR: 32375.14.jos.007527] http://www jos.org.cn
O [ERL LA RAFRT TR . Tel: +86-10-62562563

BRI E SRS BRMN AT KE S ERN
RFES B

"FE RN MR VRN SHOR B, 195 R AT 211106)
YR M SHL B A T AME BAL R E S SEIe (R M MR K 2), 195 At 211106)
SR BEFAMID, E-mail: s.chen@nuaa.edu.cn

B OB BARETANAESBKIEILE TGRS, BERARETEXRSHBTEAAERZLEFAFFT L. AL
89 B 5 A 7 ik -E i RN S R A RS X, B A BN IE R R GARA. R, m R AR Z IR R
892 AR ), BN Sh AR & 50 S LR i By TR, S HARR 7 JF 46 K2 SR EAFAR A2 AL A iz R AT AR AT A 8
BEEATEETAESEENATZE, (LB EIRKARE EIE4F 2 THIEREXZ 8, MR E 53w AKX
VAR KA R A 8. AF L 6 LI R R, {25k 26 AL B A 4 T RAE P AL Bk, AT A
AR TAREAL AT G KT 2, ARE T R S A R MR E A E— R ARE LR R T . A
K, B 64 R AR T B 4P 2 B 4 (graph neural network, GNN) 3t /By &F % & 649 3 3 | XAy 7 XMEVA AL F 748
MEVFA B KA, KRS T IR EZBAEG R IARE ). Ak LR PR, 4% —AF o By Fo B 30 5K 245 B IR
F 8 7T 2 AL FF M 7 ik GRAD. B4k, %77 ik 4 A GNN AR 309 & X Z 698 m £, 5] ALt Trans-
former Bi3k, £ TR BUR 46 B L5 ATIR T, THAE = 18] o AL S 18] 69 o By 45 M AR K1, I 3R AT B -4 By R
fb 8P B R T, MG, GRAD £ A A B3 A Lol b AT A o d 5 LA VEZ R R E, =4 kb,
AMIESIE R A K8 P S AT B E S A REARG AT B #4E & E# 4T 12 525, 14E T GRAD #94 20K,
KEEIA): B AN B AP 2 R % AR R T AN R E AR AT

HhEES S TPIS

acg| R TR, BRiadl. 2R 5 Rk BIRCE A Tz AL B S AL AR, 2026, 37(4): 1560-1574. http:/
www.jos.org.cn/1000-9825/7527.htm

H3C 5| %3 Zhang JQ, Chen SC. Generalizable Graph Anomaly Detection via Joint Perception of Global and Local Residual
Information. Ruan Jian Xue Bao/Journal of Software, 2026, 37(4): 1560-1574 (in Chinese). http://www.jos.org.cn/1000-9825/7527 .htm

Generalizable Graph Anomaly Detection via Joint Perception of Global and Local Residual
Information

ZHANG Jia-Qiang'?, CHEN Song-Can'?

'(College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

*(MIIT Key Laboratory of Pattern Analysis and Machine Intelligence (Nanjing University of Aeronautics and Astronautics), Nanjing
211106, China)

Abstract: Graph anomaly detection, as a critical task in graph data mining, aims to identify anomalous nodes that significantly differ from
the majority of nodes in a network. Existing methods for graph anomaly detection typically adopt dataset-specific training paradigms, i.e.,
training a separate model for each dataset. However, such methods lack generalization capability across datasets and incur high training
costs. To overcome these limitations, recent studies have begun to focus on the generalization potential of residual features. Such features

are obtained by computing the difference between a node’s own representation and the representation after neighborhood propagation,

« REETH: EXR BRI EEES (62376126); HT25 K BINL MRS ACH B L TR 750 H (J2019-1V-0018-0086)
AR TR AT FE LA S 2] R R A g e TR IR . SRR % B o8I,
R 1] 2025-05-12; &2 H []: 2025-06-30, 2025-08-15; 5K FH I [H]: 2025-08-20; jos £ £k Hi i 7] 2025-09-02
CNKI M2 8 &I 2026-01-27


mailto:s.chen@nuaa.edu.cn
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
http://www.jos.org.cn/1000-9825/7527.htm
mailto:jos@iscas.ac.cn
https://doi.org/10.13328/j.cnki.jos.007527
https://cstr.cn/32375.14.jos.007527
http://www.jos.org.cn

KRRIE 5 ARL EIKREE LI Bkt T ZACE F 7 A 1561

which can largely offset dataset-specific semantic information and thus retaingeneral information closely related to anomalous patterns.
Despite initial progress in this direction, the modeling of residual features still faces the following key challenges: First, when computing
the difference between a node’s representations before and after neighborhood propagation, the sparsity of neighbors and potential
structural noise affect the reliability of the results to some extent. Second, the computation of representations relies on graph neural
network (GNN) to learn local relationships, which makes it difficult to model global relationships that are also beneficial for anomaly
detection, thus limiting the expressive power of residual features. To address these issues, this study proposes GRAD, a generalizable
graph anomaly detection method via joint perception of global and local residual information. Specifically, based on GNN for modeling
local node relationships, GRAD introduces a linear Transformer module to model global structural correlations among nodes in the feature
space without relying on the original graph structure, thus obtaining node representations with global awareness. Then, GRAD transforms
the representations into residuals between each node and its neighbors from both global and local perspectives, and integrates them to form
dataset-independent general node representations. Extensive experiments on multiple public graph datasets from different domains verify
the effectiveness of GRAD.

Key words: graph anomaly detection; graph neural network (GNN); feature representation; generalization; residual feature
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[,(Hq(,FVIqi,yi) :{

b, margin S BN 0, FI T EHIAMEA B AR ST 985, max (-, ) A& HCRHHIERAE; cos() THEEINA 3L (16):

cos(6) = Hq—IVL’ (16)
|\ H, |- H, |
S b, ZETURR IR R, 5 v, 0 EE A T T SO
s(v) = a7

Hor, H,  RUVH, 5y 597 s R AR AR A R G 4R
3.4 GRAD FEniE
MR T S48, FRA145 TR 777 GRAD HIVEANRRE, ik 1 Bk,

&% 1. GRAD Fi.

BN RBIREE T, ERIRZZRFAE LU B2 ST Th I 2 DA A 22 1 25
fth: BONSH, WIS AR E; FRELRR AL L.
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HIIH W S5
# it A2
1.for Di . €T, do

2. HETAR (). () SFFUHL;
3. end

4. for epoch in E do:

5. forDi
6 AT BB 75 SRR RE X, AR IR A, BB R y;

7 for [ in L do

8. Z' WA 3)y (@) T TR RELA T IRR;

9 R @I A (5). (6) THETT RAEREHA N B RAE;
10. end

11. Hoo — B L2 R ZE R AT 125 D,

12. H oo BT A (7)~(11) THE SAE AR T IR ZERHE
13. H — ¥ R4 R A N I R EREAT 12 51 4,

14. H AV H, — X157 AT f0M R SO mURRAE

15, LA 5) ik,

16.  FETHREE TSR S5

17. end

18. end

#I i

1. for D, € T,y do

2. [EERSH, PAT NGRS RE PP TR 6-14;
3. ()« BRERAK (7)) HERFEEY

4. end

€ Tlrain do

4 KSR

TEATT, BAVEH T HMEHARE . B EArrE UL SR ik A4, H sk SEIRISIE 5 i A RhE.
4.1 SLEEHE

NEEEVEN, TRATEIT Sk A 2 A0 0 BEUELE, 3L 12 4, K aiE g Mg, 51 30 W4 o755 5 0R0
WA 4. SEAE 513 ARCU™, FEAEANATR_E (0 K TR K SR VI A 7Y 0 900 A O Kt 4 kA7 AR, LA, I SR st 48
Tun B0F5: PubMed. Flickr. Questions F1 YelpChi; MR #54E T, E%E: Cora. CiteSeer. ACM. BlogCatalog-
Facebook. Weibo. Reddit 1 Amazon. X S6HHE 4% B A R B8, DA REE H ALY n] 2 31 2 1 i A (R
BF, LR B 1) 2o B T DAL b VA AR R T N R AN L B 1 RE . A, fE AN RS, B (LR
30) AR BEEDN 10 BB LM SUTHE B WER 1 R, HAE BT,

o 5| LM% Cora. CiteSeer. PubMed. ACM, 1 s AR, WNFIFIR R, 31 s @ V1A 58 ) &

o #3Z M %% BlogCatalog. Flickr: %7 s F P, i 3R R, 1 sUR MRS F P AR 4L 2 P 4 v AR A 1Ak
SCAR N, Uit B B AR B IR AL I8 A Facebook: 7 I A R R 4. Weibo: I 1 -15 &, 4E i 4542
R P BRiE AT BE. Reddit: TG W 2%, B 35025 F P B br id R e 81 A, JB A - SCA I & Question: K H
%75 Yandex Q, 1 MU, R IR— 4 N 2 BARAE 012 58 B, 715 mURFAE B0 A P 3R SCA Y FastText 1] ] &
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KA.
o LTRSS P 4% Amazon: FIEERT -7 ok R I, T TR 32 R4S B ™ dh PFIR BO AT . YelpChi: iR
BEPFL, TR e R R 2R,

R KRB ENGIHE L

KA SRS gk W WAHE DHE RERE PR REWEE REEE (%)
Cora J 2708 5429 1433 3.90 150 5.53
CiteSeer - J 3327 4732 3703 2.77 150 4.50
ElN S
ACM - J 16484 71980 8337 8.37 597 3.62
PubMed v — 19717 44338 500 4.50 600 3.04
BlogCatalog ~ — V 5196 171743 8189 66.11 300 5.77
Flickr v - 7575 239738 12047 63.30 450 5.94
N — Facel?ook - V 1081 55104 576 50.97 25 2.31
Weibo - V 8405 407963 400 48.53 868 10.30
Reddit - V 10984 168016 64 15.30 366 3.33
Questions v — 48921 153540 301 3.13 1460 2.98
X Amazon - V 10244 175608 25 17.18 693 6.76
ML S IPA I 4 .
YelpChi v — 23831 49315 32 2.07 1217 5.10

4.2 M IERRITEE A

FEAR S, AR # F A F5 48 AUROC Al AUPRC SR PFfiti B IR 2 £y 4 Ak 4% st F AUROC (area under
the ROC curve, ROC #14: T IAR), T i AL A [R] RME T X 40 IR FAFEA IR 70, BUETEH [0, 1], (EM KRR
FETPE BERL DT . ROC B2k H TPR (true positive rate) Al FPR (false positive rate) #4i%, 115 5 20T

TP
TPR = ——
TP+FN
FpP
FPR= ———
FP+TN

oA, TP (true positive) FR 7z~ IERf TN A IEAE A, FP (false positive) R~ i TN B IEAEAR, TN (true negative) R
IER T I AURE AR, FN (false negative) FRo S i TN 1 FUFEAS. XF-F AUPRC (area under the PR curve, PR 2k T
AR, TIPSR IEFEA (055 LR # R - R R R, BUEYEH [0, 1], (AR 1 U AR 1250

R SERE #E. PR BHZR H Precision (F5HHZR) Il Recall (31013 # ik, v+ & 7 =00 T
TP

TP+FP
TP '

TP+FN

NESIE AT 777 GRAD FIAT 20, AT EL LN ARG 77 73T L.

o GONIT: P ol 2 ] 245 4515 Ft) 25 Bt A T8, 308 3o 40 J S 45 ML ) s A Ak 40 P 68 A

o GAT™): QI M-l 51 N TE R FAL, ZhAS TR BE T 5 STRRBE, BEARAE A A R AT 55 Ak 13 2 70 40 A AR T
T 5T P RALE.

o BGNN": i FE HETHH 55 (GBDT) 55 GNN MIZE &, & 1A FE4 R4 5 5 R4 1 R %08 . GBDT i 5%
FRAEALEE, GNN M I 45 M 15 2, B8 2 PR MR S - R DU R

o BWGNN!: G 2 A 7E e B AT /2 6] Joi s 7 ST I ok 9%, 7T UM U S A A R B 5, BV Bl
B2 TR 43 A5 T R AT AR AR AT DX 355 P RRAAE ] .

o GHRN™: 3 3 P (0 W B 3 A I 7 vk, Fig S B v 5 PRI A 3R 52 IE M . St 348 o g Ak 20K 1
WL, BT R E R R

Precision =

Recall =
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© DOMINANT!: 3 P 57 5 A A 2 452 11 b 9 288 o P A0 5000 I 2 e £ 1 8, 45 GON 5T B 1 4 i 2%,
ST B A M AT B R R, A EE MR 25 IR G K SR I

o CoLAP™: SEFHRT bYW 2 7 3 ) SRR S Bl S48 ot 51 1R R 35 8., T s i b e = o 5 L AR I T 4%
IR &, W1 S FEIEBIEE N A BBE S,

o HCM-APY: BB T VE A 1 W BT 45, I @R i 5 40 Jm 1R S0fs B, Wik wikh s vE 48 4%, IF9IA
DU S ST Ak S R e

o TAM"Y: - 8 ] o P A0 o 3 o3 A0 ek S B4 T, 88 3 7 3B A0 P20 s 80 i A2 4 9 5 SIS 1 EE 64
SR SIS AT,

o ARC!: —Fh3ET 1N 308 o B RTvZ A0 B B S A I i vk, R (A P/ 0 1 3 3 i S ) S 0, AR
10 B T E R S 58 5 R IRk 22 3R Rk J= 345 B PR S — 50l 7.
43 SLRERS5HHR

F2ME I PRI T IEEEAEREE FRATATIE 1775 GRAD 5%t 7 ikt ge 45 1. vl LUK I, it B
AATE T BT, GRAD B HBIFRERDL, EAHMARE LT, 2N HiEE Lk s 7 B e irteae.
B it AHE T35 11 SOTA J7i% ARC, 7E 8 M 4#E 4£ L 1-F- 3 AUROC F1-¥-¥4 AUPRC 73 58 T 1.9% Fl
5.4%. Fe 5 M, 7E Amazon R 4L 1A 5 W IR, W TE I JR R 76 1 Z 2098 4R P 4 R ik 22 15 B 0 7 A il 1
HEEMR R ARG RS S N, TR £ FH IR %, W0 GCN M BGNN 25, B34 /)
R IIN, Ho a8 22 R T3 B 8R4 2 AL RS F7, KT T 5% AT 32 Ak 1R S5 R S A B £ 7 5K T 70 I v
NI, G0 CoLA F DOMINANT 45, JEILH 7 84F B34+ 77, XA D) T e A5 H 0 B 53 6 Aar Il i) 1 AT
5, RHATHE R R R FE S, XEA —EMZIEE /1. teln, 78 CoLA =, 13 RAE NS bh SZ 5] % 371 F B = 815
B, BB @A f 5 AR T & I % 0 R, 1 — DR IUE, 7R P BT % B SR AT ORI R, IR
JEBLH — B M REBE T, W07E Facebook I Weibo [ B 1 G A8 145 10, IX AR B T 76 b 1) R0 e 75 22 et i
M.

# 2  AUROC 75 1 {5 AT MR RE (P HMEEARER) (%)

Type Method Cora CiteSeer =~ ACM BlogCatalog Facebook Weibo  Reddit Amazon Average
GCN 59.64+8.3 60.27+8.1 60.49+9.6 56.19+6.3 29.51+4.8 76.64+17.650.43+4.4 46.63£3.4 54.98+6.6
GAT 50.06+2.6 51.59+3.4 48.79+2.7 50.40+2.8 51.88+2.1 53.06+7.4 51.78+4.050.52+17.251.01+4.0
BGNN  42.45+11.542.32+11.844.00+13.6 47.67+8.5 54.74+25.232.75+35.350.27+3.8 52.26+3.3 45.81+4.1

BWGNN  54.06+3.2 52.6142.8 67.59+0.7 56.34+1.2 45.84+4.9 53.38+1.6 48.97+5.755.26+16.9 54.26+3.4
GHRN  59.89+6.5 60.27+8.1 60.49+9.6 56.19+6.3 29.51+4.8 76.64+17.650.43+4.4 46.63+3.4 54.98+6.6

DOMINANT 66.53+1.1 69.47+2.0 70.08+2.3 74.25+0.6 51.01+0.7 92.88+0.3 50.05+4.9 48.94+2.6 65.40+1.8

Unsupervised- CoLA  63.29+8.8 62.84+9.5 66.85+4.4 50.04+£3.2 12.99+11.6 16.27+5.6 52.8146.6 47.40+7.9 46.56+6.0

pre-train only HCM-A  54.28+4.7 48.1246.8 53.70+4.6 55.31£0.5 35.44+13.965.52+12.548.79+2.7 43.99+0.7 50.64+3.3

TAM 62.02£2.3 72.27+0.8 74.43t1.5 49.86+0.7 65.88+6.6 71.54+0.1 55.43+0.3 56.06+2.1 63.44+1.8
DOMINANT 72.23+0.3 74.69+0.3 74.34+0.1 74.614+0.1 49.92+0.5 92.2140.1 52.14+5.0 59.06+2.8 68.65+1.1

Supervised-pre-
train only

U“S“F:GW‘S;Ld‘ CoLA  67.62+4.2 70.75+3.4 69.11£0.6 62.49+3.3 64.70+18.8 31.55+6.0 58.12+0.6 52.5146.6 59.61+4.2
re-traimn
pFine_tune HCM-A  56.45+4.9 55.5444.0 57.69+£3.5 55.10+0.2 36.57+10.7 71.8942.7 49.15+2.7 42.20+0.5 53.07+2.4

TAM 62.56+2.1 76.54+1.3 86.29+1.5 57.69+0.8 76.26+3.7 71.73+£0.1 56.62+0.4 57.13+1.5 68.10+1.4
Few-shot without ARC 85.33£0.4 90.64+£0.3 79.27+0.1 74.81+0.2 69.57+1.4 89.24+0.3 58.95+1.2 69.77+3.8 77.20£0.9
fine-tune Ours 86.89+0.8 91.07+0.5 79.95+0.1 74.26+0.1 65.46x1.8 90.07+0.2 60.01+0.4 84.66+2.9 79.05+0.8

VE: IR H A SR S5 3R, TR RIZ S IR ) SR 45 R

R, JATE Amazon Hifade EXTRERAEREAT 1Al 0L, Wl 4 Fros, vTROR I, 4Rt T LASH Bl =
AE A A5 I R0 S S P R A T A B BT, RIS P B, SRR BT, HL P AR S SR I AT AL P BN W B, IR
W T 4 R Bk ZE R AE AT AE — TE AR L AR TH 00 SR A HERA L.
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# 3 AUPRC J5 T 157 H KM Mk A CPIEEARIEZS) (%)

Type Method Cora  CiteSeer ACM BlogCatalog Facebook  Weibo  Reddit Amazon Average
GCN 74115 640+14 527+1.1 74410 159+0.1 67.21£152 3.39+03 6.96+2.0 1321428
GAT  649+08 5.58+0.6 4.70+0.7 12.81+2.0 3.14£03 33.34£9.8 3.73+0.5 15.74+17.8 10.69+4.1
BGNN 490412 391410 3.48+1.3 573414  3.81£2.1 30.26429.9 3.5240.5 7.51+0.5 7.89+4.7
BWGNN  7.25:0.8 635407 7.14+0.2 8.99+1.1  2.54+0.6 12.13£0.7 3.69+0.8 13.12+11.8 7.6542.1
GHRN  9.56£2.4 7.7942.0 5.6140.7 10.9442.5 241£0.6 28.53+7.3 324403 7.54+2.0 9.45:2.2

DOMINANT 12.75+0.7 13.85523 15.5942.6 3522+0.8 2.95+0.1 81.47+0.2 34904 6.11£02 21.42+0.9

Unsupervised- ~ CoLA 114135 833+3.7 731:14 6.04:0.5 190:0.6 7.59+32 3.7130.6 11.06x4.4 7.16+2.2

pre-trainonly ~ HCM-A  5.78+0.7 4.1840.7 4.0120.6 6.89+0.3  2.08£0.6 21.91+11. 3.18£02 5.87+0.0 6.73+1.8
TAM  11.1840.7 11.5540.4 23.20+2.3 10.57+1.1 8.4040.9 16.46+0.1 3.94+0.1 10.75+3.1 12.01£1.1
, DOMINANT 21.3540.7 23.02+1.5 22.74+0.9 35.79+40.6 3.56+0.1 77.69+1.4 3.84%0.7 7.48+04 24.43%0.8

Unsupervised-— 0y A 1391255 19.5143.7 8.480.5 10.43£1.2 15194117 8.03:1.1 4.07+0.1 7.27+1.1 10.86+3.0

p;fnteratfnj‘ HCM-A 641513 476£0.5 441206 6.62£0.1 223207 27.20£5.5 3.10£0.1 5.64%0.1 7.54%1.1
TAM  13.6240.5 18.66+1.4 58.0448.1 13.9040.5 11.11432 16.47+0.0 3.93£0.1 11.56+1.8 18.41£1.9

Few-shot without  ARC  47.26+0.0 48.38+0.7 40.14+0.1 34.8040.1 8.96+1.7 6546+0.9 4.14+02 15.45+43 33.07+1.1

fine-tune Ours 4927411 46.58+1.5 40.4740.1 36.3120.1 5.36+1.1 6521+0.6 4.55+0.1 60.24+4.8 38.49+1.0

TE: DL B R B S BR a5 R, TR RIZON IR B S a5 R

Supervised-pre-
train only

80 60 4
60 | 40
40 "
~ 20 F o
i
—20F -20
—40
60 | -40
—60 —40 20 0 20 40 60
HEFE
(a) JRHBTE % (b) &Rk %

K4 WAL RR

4.4 HRLSCIG

AR F AR R TR A7 GRAD R2m. B, AT T 3 FARK, 43002 1) Bk ER R &,
A R AR R AR 4k ook 2 2) W R IR B 45 M & 77, RAR T 4 RE B 1078 4 T )= 3. sb 72 4k [m] Bk 1 18540
T RIS Mg R fE R T, R 221 Transformer 4 i 2% %) B4 5¢ R BT 220, 3) & /15 B R @i 4
7r, R AT GNN [ )30 (5 BB B4R, Sein 45 RR/RTESR 4 . v LUR I, 3 AN AR #RR B R st B A
— & B TTHER. R M, R 2 A5 S R e B K, XA I T TE T2 Ak B P SR R 0 3% B SR BUCEHE S T SR (MR AE I
DB, — AR AE Weibo %85 [ 1) 2 IR AH S 1A, T LE 1) T IR 2 122 5008 4 1) 57t B M0 i 7 7 T JR 46 B
TR, ZIR B R T AT 52 R HIE R S R R, BB R ARSI 7 12—, S5k, W LRI, 7E45
MR BT, 28 TIRE AR E SRR, AR 0 = 3 1 M A 75 K38 2 #oiE 48 LR s, Hp, 18
BlogCatalog FJEILH T B AEVERE. 75 Z UL 2, 1240 09 6 4 R 4 v FAE N 77 vk ARC, PEREF IX 591 1) iR DRI 7E
T AR BRI LR AE GRAD AL BT, ZEESH K E b5 ARC HIAE. /LUK, 72 8 iR 4
[11°F- %] AUROC 1 #E L, ARC A 77.20%, Jo4= )R8 1K 77.13%, GRAD A 79.05%, [ o] 5 3iF A2 5 L 004
Rk
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R4 AE 8 AMHRSE ERTHAISE S

BN Cora CiteSeer ACM BlogCatalog Facebook Weibo Reddit Amazon
JEEER 86.89+0.8  91.07+0.5  79.95:0.1 74.26+0.1 65.46+£1.8  90.07+0.2  60.01£0.4  84.66+2.9
ThkZE  61.49+13  62.28+2.7  73.00£0.6 73.89+0.3 47.00£2.7  94.36£0.1  46.95+3.7  79.62%5.0
TR 7372408  75.85£04  74.95+0.2 75.77£0.6 54.17+1.2  90.70+0.5 56.06£3.2  84.59+2.1
JTAR 85.60+0.8  89.85+0.6  79.41+0.3 74.1040.2 66.59+2.0  89.47+0.9  59.49+0.6  72.56+5.1

TE: DL H R SR B SR 2R, RIS U ) SR

45 BEEMWSH

AR FAEE A 3 ANSHBURE, VS5 &Rk EE B Z MR S5 A BREZE K/ d, FEE A
W . BT A, AT S HOE BT BB FE (1, 0.1, 0.01, 0.001, 0.000 132 H1. A& 5 AT LUA IR, 40 Cora. CiteSeer-
Facebook X 257 A $a5e/b Byi 48, PEREBALTE 0.001 4LHX4S, B Reddit A Amazon iX 2573 s BUE K £ KIS
45, HERERRTE 0.01 oHUR. WEMERETEN SRS WEY, 2REEENERE, EMTS R TS B K.
NEFEIG R, BITELSHSE BN 0.01. % T n, WATNSEOEREEIEETE L2, 5, 10, 15,20} 2, 5t
Pt g RERTERE 6. AT LURIL, AR A2, BN MEREREE b T SCE®E FEASE I8 i $g &, [N, 78 B R
SCT SRR O, BRI AEAE R 2 BBUE A BRI R IR RIFI. T o, BATHIS Bk B B % B A
{128,256, 512, 1024, 2048} 2 7. )\ 7 IS5 R AT LURBLR 2, K BB AEAE 1024 A0S S EERe, KT 1024
JE W TERE I 28D, R, %S 303 o AR AN GRS I, 80/ Bt BB A B 1 1 RE R B TE AT, ZAE
G—E N 1024,

95 100
;\; 85 .%4—7—/1\ _ 90 -jfg ‘-\_‘ -
2o g™ == —
2 55 L o i % 60 .’"_._—: —o
45 < 50
35 . . . . . 40
10° 10! 102 103 10 2 5 10 15 20
A ny
-+ Cora = CiteSeer ACM BlogCatalog -« Cora = CiteSeer ACM BlogCatalog
-« Facebook # Weibo - Reddit == Amazon - Facebook - Weibo - Reddit = Amazon
K5 iS5 aRE RN SH A Ko IEWFEALESH
100
9
<80 f —
@] /
8 70 + = _ L
N E—
2 60 g . o—— o
50 f
40 L L L L L
128 256 512 1024 2048
d,
-+ Cora = CiteSeer ACM BlogCatalog
- Facebook -+ Weibo - Reddit = Amazon
K7 Bz NSHd,
5 82 &

VR S5 S D A Dy U ) 19X 2 v 25 v 2 5 LS R I B SR S5, RS ST . SRR BURSUR A AT Z M. (3
BUA 75 35 H s R KA o T i — S MR S 72 W 2T 30 S B A 5 95932 Ak, e DA LB 58 17 2537
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Sy R HE T AR JE AR B SR ZE R AL SR A A [ BRI, B 4E GNN R JR IR L R A T 48 A 1 DAL
W P T PIE. BT IR L [, AR Y 42 R 5 R R 22 (5 IR S B Az AL B S AR N T 12 GRAD. 1277 B 45
21 Transformer e R R A4 o 3 i RALE, I £E 42 JR MRS B AL AR 1R 35 )RR e o B 5 I A0 J 2 8] IR ZE T
A B 4 T8 5% I8 FRFAE, 5 45 6 /D REAS B A 2 ) S TE 75 B A B0 i ) e R . 52968 99, GRAD
FE 15 UL ME R S A0 T IUAT D59, AEARC, T BUACEL, Bk S (3R 22 R Ak al MLt — B £ L A, T LS
T 2B G B AR & R AKMEAR IR R AR, I, T2 Transformer, A/ fE 3 T 2 JZ M2 p 45 3047
SRASE, XK T AR, £ 5 B AR Bt B (37 SR, B0 TR R I i XU BT, R AR RR
R TR 2 R R TT 7 2.
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