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摘　要: 在回归任务中, 数值型标签噪声会扭曲数据的真实分布, 削弱模型的泛化能力. 数据过滤是目前常用的一

类方法, 在一定程度上能减少噪声影响, 但易引发过度过滤问题, 导致有效样本流失和数据分布偏移. 提出一种回

归噪声标签的渐进式区间校正 (progressive interval correction, PIC)算法, 旨在解决数据过滤导致的样本流失问题,
并有效降低标签噪声水平. 首先基于真实标签的后验分布给出标签校正的有效性条件, 以确保降低标签噪声水平;
然后对满足有效性条件的标签进行最大后验校正; 最后通过逐步缩小可信区间范围的方式渐进地校正和优化标签.
在基准数据集与真实数据集上的实验结果表明, PIC算法能够显著降低数据的噪声水平, 有效提升模型性能.
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Abstract:  In  regression  tasks,  numerical  label  noise  can  distort  the  true  distribution  of  data  and  weaken  the  generalization  ability  of
models.  Data  filtering  is  a  commonly  used  approachthatcan  reduce  the  impact  of  noise  to  some  extent.  However,  it  is  prone  to  the  issue  of
over-filtering,  leading  to  the  loss  of  effective  samples  and  the  shift  of  data  distribution.  This  study  presents  a  progressive  interval
correction  (PIC)  algorithm  for  regression  label  noise.  The  aim  is  to  tackle  the  problem  of  sample  loss  caused  by  data  filtering  and
effectively  reduce  the  label  noise  level.  First,  based  on  the  posterior  distribution  of  the  true  labels,  the  validity  conditions  for  label
correction  are  established  to  ensure  a  reduction  in  the  label  noise  level.  Then,  the  labels  that  meet  the  validity  conditions  are  corrected
using  the  maximum  a  posteriori  method.  Finally,  the  labels  are  progressively  corrected  and  optimized  by  gradually  narrowing  the  range  of
the  credible  interval.  Experimental  results  on  both  benchmark  and  real-world  datasets  demonstrate  that  the  PIC  algorithm  can  significantly
reduce the noise level of data and effectively enhance the performance of models.
Key words:  label noise; regression; label correction; progressive interval correction (PIC); noise estimation

 1   引　言

高质量的标签数据对于模型的准确训练和良好的泛化能力至关重要. 然而, 从现实世界中获取的数据往往包
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含着未知数量和分布的标签噪声 [1,2]. 标签通常由于标记员经验不足、设备缺陷以及编码错误等原因受到污染 [3,4].

例如, 在面部年龄估计任务中, 由于标记者的主观性存在差异, 不同标注者对同一人脸图像给出的年龄标注可能存

在较大偏差, 从而引入大量标签噪声 [5]. 回归任务中的标签噪声比分类任务中的标签噪声更复杂. 其主要原因是,

分类中的标签是离散且有限的类别, 而回归中的标签可能属于一个连续且有无限可能取值的区间 [6].

目前的标签噪声学习方法主要从两个方面处理标签噪声问题. 在模型方面, 通过设计鲁棒网络架构、重构损

失函数和应用正则化技术等方法构建噪声鲁棒模型 [7,8]. 在数据方面, 使用噪声过滤或校正方法可以将多数噪声标

签去除或纠正 [9]. 与构建噪声鲁棒模型相比, 后者只需要给出样本的筛选或校正结果, 不需要对模型进行任何改动.

因此, 从数据角度处理标签噪声已成为一类即插即用的热门方法. 在回归任务中, 噪声过滤由于成本低、风险小等

原因已成为处理标签噪声的主流方法 [10,11]. 与回归噪声标签校正相比, 噪声过滤以相对保守的方式放弃不可靠数

据, 不会引入额外的标签噪声, 但会丢失样本信息可能导致数据分布发生偏移. 标签校正在保持数据分布的同时降

低标签偏差, 但如果校正不当可能会引入额外的标签噪声. 由于回归标签噪声难以精确校正, 目前回归标签噪声的

清洗方法以噪声过滤为主. 完成高质量的标签校正是一项极具挑战性的任务, 需要审慎处理多个关键问题: 首先需

明确待校正标签的选择标准, 其次要确定合理的校正目标值, 同时还需设计科学的校正流程. 尤为关键的是, 整个

校正过程必须严格控制噪声引入, 确保最终实现标签质量的整体提升而非恶化.

在现有标签噪声回归建模的研究中, 对于那些被误标的样本, 如果能够直接纠正其标签, 将更有效地利用数据

提升模型性能 [12]. 可信的标签校正能够避免数据的损失, 它在保留更多有价值信息的同时, 还能更精准地还原数

据的真实分布和准确标签, 从而使模型学习到更准确的模式. 本文在确保噪声水平不会升高的前提下, 在每一轮渐

进地校正少量噪声大的标签, 避免数据和模型出现较大的扰动. 图 1给出了在合成数据集上渐进式区间校正的示

例. 在每个子图中, 黑点代表标签准确的干净数据, 灰色区域表示算法推断出的可信区间. 灰色区域内的蓝点代表暂

时无需校正的低噪数据, 而灰色区域外的红点代表应该被校正的高噪数据. 具体的标签校正通过箭头表示. 图 1(a)–(c)

给出了 3次校正的详细过程. 由图 1可见, 噪声标签经过多次校正后更接近黑色的干净标签.
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图 1　合成数据上的标签校正算法示例
 

本文的主要贡献包括 3方面.

(1) 基于真实标签的后验分布, 从噪声水平的视角给出一种标签校正的有效性条件, 为降低标签噪声水平和设

计可信校正方法提供了理论保障.

(2) 提出一种噪声标签的渐进式区间校正 (progressive interval correction, PIC)算法. 它以真实标签的最大后验

(maximum a posteriori, MAP)估计值为中心构造一系列从大到小的区间, 分批校正观测标签在预估区间之外的大

噪声标签. 这些区间的半径受标签校正有效性条件的约束, 以确保实际校正效果.

(3) 在基准数据集上的实验结果表明, PIC 算法优于最先进的噪声过滤方法. 在年龄估计和视线估计任务中,

PIC算法可以有效降低主流深度模型的预测误差.
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 2   相关工作

当前标签噪声处理方法的研究重心多集中于分类任务中的类别型标签噪声. 与之形成鲜明对比的是, 针对回

归任务中数值型标签噪声的处理方法相对较为稀缺. 在现有的回归任务研究成果中, 多数方法采用标签过滤策略

来应对噪声问题, 而基于标签校正的方法在理论与实践层面仍存在广阔的探索空间.
对于类别型标签噪声问题, 侯森寓等人 [13]根据数据的离群程度提出一种基于相对离群因子 (ROF) 的集成过

滤方法, 其中 ROF为样本的同质和异质离群因子的比值, ROF值越大, 样本含标签噪声的概率越高. Zhang等人 [14]

针对特征相关标签噪声提出一种渐进式标签纠正 (progressive label correction, PLC)算法. 该算法通过迭代训练神

经网络和校正标签来逐步提高模型性能. 文献 [15,16]提出将标签过滤与校正有机结合的策略, 用以解决分类任务

中的标签噪声问题, 这一策略为标签噪声处理领域提供了新的研究视角与技术路径.
对于回归任务中的数值型标签噪声问题, Martin等人 [17]将迭代划分过滤 (iterative partition filter, IPF)方法从

分类任务迁移到回归任务, 该方法在不相交的子集上构建决策树, 并使用迭代方法对整个数据集进行评估. 但这类

方法未考虑标签之间的本质性区别, 会导致损失函数错配或阈值依赖等问题.
相比之下, 针对标签噪声回归任务设计的原生方法更能适配回归任务的特性. 回归集成过滤 (ensemble

filtering for regression, RegEF)[18]使用集成学习策略, 将多个异构模型的预测结果作为判断依据, 通过多数投票机制

确定标签的正确性. 编辑近邻回归 (edited nearest neighbors filtering for regression, RegENN)[19]是一种经典的基于近

邻的过滤方法, 该方法将预测偏差与自适应阈值进行比较, 将大于阈值的样本识别为噪声样本. Li等人 [20,21]针对回

归标签噪声提出了自适应阈值过滤 (adaptive threshold filter, ATF)和集成迭代过滤 (ensemble iterative filter, EIF)
方法. 这两种方法分别使用同质模型和异质模型计算噪声分数, 并将噪声分数超过阈值的样本定义为噪声样本.
Jiang等人 [12]提出了一种最优样本选择 (optimal sample selection, OSS)框架, 该框架在泛化误差界理论保证下删除

具有较大噪声估计的样本. 根据 OSS框架设计了覆盖距离过滤 (covering distance filter, CDF)和最大后验噪声过

滤 (maximum a posterior noise filter, MAPNF)[22]方法. 为了解决 OSS框架目标函数的参数复杂性等问题, Jiang等
人 [23]提出了一种可解释性样本选择 (interpretable sample selection, ISS)框架. 该框架在保留相对较低噪声水平的

同时最大化可用样本的数量, 并根据 ISS 框架设计了嵌入式覆盖距离过滤 (embedded covering distance filter,
ECDF)方法.

在现有的回归标签噪声处理方法中, 过滤法是被广泛采用的主流策略. 然而, 这种方法存在明显局限: 一方面, 它
在去除噪声样本的过程中, 往往会不可避免地造成有效样本的流失, 导致模型可利用的关键信息减少; 另一方面, 过
滤操作可能破坏原始数据的内在分布特征, 引发数据分布偏移问题, 进而影响后续模型训练的稳定性与泛化能力.

 3   方　法

本节介绍标签校正的有效性理论、最大后验校正和渐进式区间校正算法.

D = {xi,yi}Ni=1 xi yi

yi ỹi

设有回归数据集  ,   表示第 i 个样本的输入特征,   表示第 i 个样本的数值型标签. 如果数据集受

到标签噪声的干扰, 则观测标签   可能不等于潜在未知的真实标签  .
定义 1. 数值型标签噪声定义为: 

ei = yi− ỹi (1)

定义 2. 回归模型 m 在数据集上的误差定义为: 

ri = m(xi)− yi (2)

单个样本真实标签的后验分布可以通过多个近邻样本的标签或多个模型的预测标签来构造. 高斯混合模型

(Gaussian mixture model, GMM)是最基本和常见的一种构造形式 [22], 它通过加权组合多个高斯成分的方式来描述

真实标签的后验分布, 其概率密度函数为: 

f (ỹ) =
∑K

k=1
πkϕ(ỹ;µk,Σk) (3)
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πk其中,   表示第 k 个高斯分布的权重, 第 k 个高斯成分的密度函数为: 

ϕ(ỹ;µk,Σk) =
1

√
2πΣk

· exp
(
−1

2
(ỹ−µk)T

∑−2

k
(ỹ−µk)

)
(4)

µk Σk其中,   为均值,   为标准差. 这些均值可以取值为多个近邻样本的标签或多个模型的预测标签.

 3.1   标签校正的有效性理论

D Nc Dc Nu Du

N = Nc+Nu D̂ = Dc∪Du

假设原始数据集   中有   个标签被校正 (形成校正子集  ), 有   个标签未校正 (形成未校正子集  ), 这时

有  . 标签被校正后的数据集  . 虽然真实标签是未知的, 但可以利用标签一致性特征 (如近邻

标签比较接近)构造真实标签的后验分布. 若已知真实标签的后验分布, 定理 1给出了有效校正 (能够降低标签噪

声水平)的一个充分条件.
D D̂ yi

ŷi ∆

定理 1. 对于含噪回归数据集  , 校正后数据集   的噪声水平变低的一个充分条件是被校正样本的观测值 

到预估值   的偏差大于阈值  , 即: 

|yi− ŷi| > ∆⇒ ED̂(e2
i ) < ED(e2

i ), ∀i = 1,2, . . . ,Nc (5)

∆ =

√
1
Nc

∑Nc

i=1
max

[
2(ŷi− yi)(ŷi−EY(ỹi)),0

]
Nc Dc ŷ ỹi

EY(ỹi) f (ỹi)

其中,  ,   表示标签校正数据集   的样本量,   为预估标签,   为潜在真

实标签,   表示关于后验分布   的真实标签的期望值.
Dc ∀i = 1,2, . . . ,Nc证明: 对于校正子集   中的任意样本 ( ), 有: 

|yi− ŷi| > ∆ =
√

1
Nc

∑Nc

i=1
max

[
2(ŷi− yi)(ŷi−EY(ỹi)),0

]
(6)

 

⇒ (ŷi− yi)2 >
1
Nc

∑Nc

i=1
max

[
2(ŷi− yi)(ŷi−EY(ỹi)),0

]
⩾

1
Nc

∑Nc

i=1
2(ŷi− yi)(ŷi−EY(ỹi)) (7)

Nc将所有   个被校正样本得到的不等式两端分别取均值可得: 

1
Nc

∑Nc

i=1
(ŷi− yi)2 >

1
Nc

∑Nc

i=1
2(ŷi− yi)(ŷi−EY(ỹi)) (8)

 

⇒ EDc (ŷi− yi)2 > 2EDc (ŷi− yi)(ŷi−EY(ỹi)) (9)
 

⇒ 0 < EDc (yi− ŷi)2+2EDc (yi− ŷi)(ŷi−EY(ỹi)) (10)

EDc ,Y(ŷi− ỹi)2两边同时加上  , 得: 

EDc ,Y(ŷi− ỹi)2 < EDc ,Y
[
(yi− ŷi)+ (ŷi− ỹi)

]2 (11)
 

⇒ Nc

N
EDc ,Y(ŷi− ỹi)2 <

Nc

N
EDc ,Y(yi− ỹi)2 (12)

Nu

N
EDu ,Y(yi− ỹi)2两边同时加上  , 可得:

 

Nu

N
EDu ,Y(yi− ỹi)2+

Nc

N
EDc ,Y(ŷi− ỹi)2 <

Nu

N
EDu ,Y(yi− ỹi)2+

Nc

N
EDc ,Y(yi− ỹi)2 (13)

D̂ D

ED̂(e2
i ) < ED(e2

i )

其中, 左端表示校正后数据集   中的标签与真实标签的平均偏差, 而右端表示原始数据集   中的标签与真实标签

的平均偏差, 即  . 证毕.

∆定理 1表明, 当实际标签距离相对可信的预估标签较远 (超过阈值  )时, 采用预估值替换原始标签可以降低

校正标签的噪声水平. 需要注意的是, 校正效果在一定程度上依赖于预估标签的准确性, 预估标签应当采用相对可

靠的标签估计方式 (如基于后验分布估计真实标签), 而不是随意指定.

 3.2   最大后验校正

ỹ在实际回归任务中, 真实标签   是未知的. 本文通过每个样本的多个预测标签和 GMM 构建真实标签的后验

分布, 并依据最大后验 (maximum a posteriori, MAP)原则预估每个样本的标签值, 即选择后验分布中可能性最大

的标签值作为预估值. 如果实际标签和此预估值满足定理 1中的条件, 则将实际标签校正为此预估值.
真实标签的后验分布形式为: 

姜高霞 等: 数值型标签噪声的渐进式区间校正方法 1551



f (ỹi) =
∑K

k=1
πkϕ(ỹi;µk,Σk) (14)

µk = y(k)
i其中,   表示第 i 个样本的第 k 个预测值. 协方差矩阵的标准差 [24]为:

 

Σk =

(
4

3n

)1/5

·
median{|y(k)

i −µ̄k |}
ψ−1(3/4)

(15)

µ̄k =
1
K

∑K

k=1
y(k)

i ψ−1 median{·}其中,  ,   为标准正态分布的逆函数,   为中位数函数.

ŷi因此, 对于定理 1中的预估标签   可以根据MAP原则计算得到: 

ŷi = argmax
ỹi

f (ỹi) (16)

同理, 真实标签的期望: 

EY(ỹi) =
∫ +∞

−∞
f (ỹi)dỹi (17)

|yi− ŷi| > ∆当某样本满足定理 1 中的条件   时, 可以将其标签校正为公式 (16) 的预估标签, 并将此校正方法称

为最大后验校正. 需要注意的是, 后验分布、预估标签和期望标签 (公式 (14)–(17))都是因样本而异, 需要逐个计算.

 3.3   渐进式区间校正算法

O(n · logn) O(n)

O(n · logn)

本节设计了一个渐进式区间校正 (PIC)算法 (算法 1), 主要包括 3个阶段: (1)将整个数据集粗略地划分为可

信集和可疑集 (Steps 3、4); (2)使用子集划分法 (实验中取 J=5)得到的多个标签预测值用于构建真实标签的后验

分布, 然后更新阈值和区间半径 (Steps 5–7); (3)渐进地校正符合条件的标签 (Steps 8–15). 算法中使用的基模型为

决策树回归模型, 因此第 1阶段和第 2阶段的时间复杂度为  , 第 3阶段的时间复杂度为  , 因此整个

算法的时间复杂度为  .

算法 1. 渐进式区间校正 (PIC)算法.

D = {xi,yi}Ni=1输入: 回归数据集  , 起始阈值 T0, 步长 β, 子集划分数量 J, 基模型 m(x);

D̂输出: 校正后的数据集  .

T̂ = T0 D̂ = D1.  ,  ;

2. do

{ypre
i }Ni=13.　 使用交叉验证法训练模型 m(x), 并预测所有样本的标签  ;

ypre
i yi y∆i

y∆i −µ
σ

D̂

D1 D2 N1 N2

4. 　计算   和   之间的差值   及其 Z-score( ), 使用 Z-score 准则的异常值判断方法将   划分为可信集

(|Z-score|≤3)和可疑集  (|Z-score|>3), 其样本量分别为   和  ;
D1 D2 y(k)

i (i=1, . . . ,N2,k=1, . . . , J)5. 　将   随机划分为 J 个子集, 分别用每个子集训练回归模型 m(x), 并预测   内样本标签  ;

ŷi EY(ỹi)6. 　根据公式 (14)、(15)估计每个样本真实标签的后验分布, 并用公式 (16)、(17)计算估计值   和期望  ;
∆7. 　根据公式 (6)计算或更新阈值  ;

T̂ > ∆8. 　if 
yi ∈ D29. 　　for (each  )

yi < [ŷi− T̂ , ŷi+ T̂ ] yi← ŷi10. 　　　if ( )  ; //区间外标签校正

11. 　  end for
12.   else break;
13.   end if

D1 D2 D̂14.   合并   和校正后的   作为新的  ;
T̂ ← T̂ −β ;15.        //更新区间半径

T̂ > ∆16. while 
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 4   实验分析

本节介绍了所提算法在基准数据集和真实数据集上的结果. 所有实验都是在操作系统为 64位Windows 10计

算机上完成, CPU 为 Intel(R) Core i7-10700H, CPU 频率为 2.9 GHz, 内存为 16.0 GB. 其中第 4.1 节使用 Matlab

R2018b编程, 第 4.2节的实验使用了 Python 3.8和 PyTorch 2.2, 并采用 NVIDIA GeForce RTX 4090 GPU和 24 GB

显存进行加速.

 4.1   基准数据集

实验中, 每个基准数据集按照 7:3的比例随机划分为训练集和测试集, 在训练集中人工添加伪随机标签噪声;

然后通过所提方法或对比方法检测并过滤或校正噪声样本; 最后使用过滤或校正后的样本训练测试模型, 并在测

试集上检验有效性. 为了确保结果的稳定性, 以上步骤重复 5次.

 4.1.1    实验框架

表 1列出了实验中使用的 10个基准回归数据集 [25,26]. 数据的数值型特征和标签均被归一化到区间 [−1, 1].
 
 

表 1　数据集信息
 

No. 数据集名称 样本量 特征数

1 Concrete 1 030 8
2 Treasury 1 049 15
3 Music 1 059 68
4 MG 1 385 6
5 Airfoil 1 503 5
6 Skill 3 338 18
7 Parkinsons(y1) 5 875 16
8 Parkinsons(y2) 5 875 16
9 Cpusmall 8 192 12
10 Condition 11 934 16

 

为了更全面地模拟多种噪声, 实验中设置了 4种噪声比例 (NR=10%、20%、30%和 40%)和 4种噪声分布类

型, 每种分布类型都有两组不同参数. 它们分别服从均匀分布 (U(−0.5, 0.5) 和 U(−0.8, 0.8))、高斯分布 (N(μ=0,

σ=1) 和 N(μ=0, σ=0.8))、拉普拉斯分布 (Lp(μ=0, σ=0.5) 和 Lp(μ=0, σ=0.8)) 和高斯混合分布 (N(μ=0.1, σ=0.3)+

N(μ=−0.1, σ=0.3)和 N(μ=0.2, σ=0.5)+N(μ=−0.1, σ=0.5)).

对比算法包括 RegENN[19]、CDF[12]、IPF[17]、ATF[20]、MAP[22]、EIF[21]和所提 PIC算法. 测试模型包括高斯过

程回归 (GPR)、随机森林 (RF)和支持向量回归模型 (SVR). 模型在测试集上的泛化能力采用均方误差 (mean square

error, MSE)来度量: 

MSE =
1
n

∑n

i=1
[m(xi)− yi]2 (18)

 4.1.2    标签校正结果与分析

表 2 列出了不同噪声比例下各数据集上不同算法的平均测试误差和标准差. 从表 2 中的统计结果可以看出,

PIC算法的测试误差总能排在前二, 且达到最优次数的比例高达 80%. 从噪声水平的角度看, 噪声比例越大, 测试

误差越大. PIC在每种噪声比例上具有最小测试误差的次数变化幅度不大, 说明 PIC在不同噪声水平上具有良好

的稳定性.

表 3列出了不同噪声比例下各模型在 10个数据集上的平均测试误差. 从表 3中的数据可以看出, 噪声比例越

大, 测试误差越大. PIC的测试误差在各测试模型上均为最小. 对比 3个模型的测试误差可见, SVR的测试误差均

为最大, 说明 SVR模型对所添加的人工标签噪声相对更为敏感.
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表 2　不同噪声比例下的测试误差比较
 

NR No. RegENN CDF IPF ATF MAP EIF PIC

10%

1 0.039±0.005 0.049±0.012 0.033±0.009 0.050±0.013 0.077±0.035 0.038±0.011 0.033±0.007
2 0.057±0.040 0.019±0.026 0.017±0.021 0.017±0.023 0.055±0.045 0.016±0.022 0.013±0.018
3 0.128±0.005 0.145±0.002 0.149±0.004 0.182±0.009 0.161±0.008 0.142±0.002 0.132±0.003
4 0.079±0.002 0.079±0.002 0.080±0.003 0.111±0.009 0.086±0.005 0.081±0.001 0.074±0.001
5 0.038±0.006 0.044±0.010 0.035±0.006 0.050±0.005 0.045±0.007 0.040±0.007 0.028±0.004
6 0.106±0.007 0.109±0.005 0.109±0.005 0.119±0.005 0.112±0.011 0.103±0.004 0.106±0.008
7 0.149±0.004 0.162±0.004 0.166±0.004 0.222±0.017 0.167±0.003 0.171±0.007 0.143±0.003
8 0.131±0.004 0.138±0.006 0.153±0.005 0.195±0.013 0.147±0.003 0.155±0.008 0.131±0.003
9 0.020±0.009 0.010±0.009 0.009±0.008 0.011±0.010 0.025±0.017 0.009±0.008 0.007±0.005
10 0.029±0.016 0.012±0.010 0.009±0.007 0.014±0.010 0.024±0.018 0.009±0.007 0.009±0.005

20%

1 0.043±0.007 0.048±0.012 0.038±0.010 0.055±0.012 0.084±0.044 0.042±0.010 0.034±0.006
2 0.047±0.035 0.017±0.023 0.015±0.019 0.016±0.022 0.069±0.062 0.018±0.024 0.015±0.020
3 0.129±0.006 0.133±0.003 0.162±0.005 0.185±0.011 0.159±0.011 0.152±0.002 0.123±0.002
4 0.080±0.004 0.078±0.001 0.088±0.005 0.113±0.010 0.103±0.039 0.083±0.002 0.075±0.002
5 0.037±0.007 0.043±0.009 0.036±0.006 0.054±0.005 0.049±0.010 0.043±0.006 0.033±0.004
6 0.108±0.008 0.109±0.005 0.111±0.006 0.121±0.004 0.113±0.013 0.109±0.004 0.106±0.008
7 0.152±0.005 0.158±0.005 0.172±0.007 0.227±0.018 0.168±0.005 0.171±0.006 0.150±0.004
8 0.132±0.004 0.139±0.005 0.153±0.006 0.195±0.014 0.143±0.005 0.154±0.007 0.130±0.003
9 0.018±0.009 0.010±0.008 0.010±0.008 0.010±0.009 0.024±0.016 0.009±0.008 0.007±0.005
10 0.024±0.013 0.012±0.009 0.010±0.008 0.015±0.010 0.033±0.028 0.011±0.008 0.010±0.006

30%

1 0.045±0.009 0.052±0.011 0.043±0.011 0.056±0.013 0.084±0.038 0.040±0.009 0.032±0.006
2 0.047±0.039 0.015±0.020 0.018±0.021 0.018±0.024 0.080±0.085 0.017±0.023 0.010±0.013
3 0.138±0.007 0.141±0.003 0.157±0.007 0.188±0.009 0.165±0.013 0.148±0.002 0.123±0.005
4 0.083±0.006 0.071±0.001 0.090±0.006 0.113±0.009 0.107±0.035 0.085±0.002 0.079±0.003
5 0.039±0.007 0.043±0.008 0.040±0.006 0.056±0.005 0.056±0.016 0.047±0.005 0.032±0.004
6 0.105±0.007 0.109±0.005 0.111±0.006 0.121±0.005 0.118±0.017 0.107±0.004 0.102±0.009
7 0.150±0.005 0.155±0.005 0.175±0.007 0.227±0.019 0.171±0.009 0.171±0.007 0.146±0.004
8 0.133±0.005 0.142±0.006 0.157±0.007 0.191±0.012 0.149±0.008 0.157±0.007 0.132±0.004
9 0.018±0.010 0.009±0.008 0.010±0.007 0.010±0.009 0.029±0.027 0.009±0.008 0.007±0.005
10 0.022±0.013 0.012±0.009 0.011±0.008 0.018±0.010 0.042±0.039 0.011±0.009 0.011±0.006

40%

1 0.046±0.009 0.051±0.011 0.050±0.011 0.062±0.013 0.092±0.038 0.046±0.009 0.038±0.006
2 0.042±0.039 0.016±0.020 0.019±0.021 0.018±0.024 0.079±0.085 0.016±0.023 0.016±0.013
3 0.138±0.007 0.137±0.003 0.154±0.007 0.180±0.009 0.169±0.013 0.153±0.002 0.129±0.005
4 0.081±0.006 0.083±0.001 0.088±0.006 0.117±0.009 0.110±0.035 0.082±0.002 0.076±0.003
5 0.040±0.007 0.047±0.008 0.045±0.006 0.063±0.005 0.065±0.016 0.047±0.005 0.036±0.004
6 0.110±0.007 0.108±0.005 0.112±0.006 0.122±0.005 0.120±0.017 0.110±0.004 0.107±0.009
7 0.157±0.005 0.158±0.005 0.179±0.007 0.244±0.019 0.173±0.009 0.171±0.007 0.152±0.004
8 0.136±0.005 0.140±0.006 0.159±0.007 0.200±0.012 0.153±0.008 0.163±0.007 0.130±0.004
9 0.018±0.010 0.009±0.008 0.011±0.007 0.010±0.009 0.033±0.027 0.009±0.008 0.009±0.005
10 0.021±0.013 0.013±0.009 0.013±0.008 0.022±0.010 0.052±0.039 0.014±0.009 0.010±0.006

前二的数量 18 7 9 0 0 6 40
最好的数量 1 3 3 0 0 1 32

注: 加粗数字表示最好的实验结果, 下划线为次优的实验结果
 

根据每个模型在各数据和各噪声比例上的测试误差, 图 2画出了各种噪声处理方法所对应测试误差的临界差

异图 (critical difference, CD). CD图不仅可以给出算法之间的排名, 还可以通过 Nemenyi检验显示算法之间的排

名是否显著. 算法排名越小, 表示测试误差越小.
由图 2 可见, 所提的 PIC 算法在各个模型上都取得了最好的测试误差排名. 在 GPR 模型中, PIC 和 CDF、

EIF差异不显著. 在 RF和 SVR模型中, PIC比其他算法有显著性优势. 总体来说, 与其他算法相比, PIC更能有效
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地降低测试误差, 最大程度地提升模型的泛化能力.
图 3显示了各个算法在不同规模数据上的运行时间. 在已有的算法中, CDF和 EIF的运行时间最短, RegENN

的效率在大规模数据集上的表现不是很好. 所提 PIC的运行时间在小规模数据上与其他算法差别不大. 随着数据

规模的增加, PIC的运行时间也在增加. 总体上 PIC的运行时间仅次于 CDF和 IPF. 在上万规模数据集上完成标签

校正的时间不超过 5 s.
 
 

表 3　各模型平均测试误差
 

NR 模型 RegENN CDF IPF MAP ATF EIF PIC

10%
GPR 0.073 0.070 0.072 0.085 0.090 0.070 0.065
RF 0.076 0.074 0.073 0.085 0.101 0.075 0.065
SVR 0.085 0.086 0.083 0.100 0.101 0.084 0.074

20%
GPR 0.073 0.069 0.076 0.085 0.093 0.073 0.065
RF 0.075 0.072 0.077 0.090 0.103 0.077 0.066
SVR 0.083 0.083 0.086 0.108 0.102 0.087 0.074

30%
GPR 0.074 0.070 0.078 0.086 0.093 0.074 0.065
RF 0.076 0.073 0.078 0.096 0.103 0.078 0.065
SVR 0.085 0.083 0.088 0.119 0.103 0.087 0.072

40%
GPR 0.074 0.071 0.079 0.086 0.097 0.075 0.068
RF 0.077 0.074 0.080 0.099 0.108 0.080 0.067
SVR 0.085 0.083 0.090 0.130 0.106 0.088 0.076

注: 加粗数字表示最好的实验结果
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图 3　各算法的运行时间
 

 4.2   真实数据集

 4.2.1    年龄估计

面部年龄估计在计算机视觉中是一个具有挑战性的任务. 它在安防监控等应用中发挥着重要的作用. 实验中

使用的Wiki数据集 [27]是面部年龄识别研究中的常见数据集之一, 包括预处理后的 35 540张图像. 每个图像的年
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龄标签由多个注释者共同标记, 利用平均值来估计图像的真实年龄. 然而, 受主观因素 (如认知差异) 或客观因素

(如图像质量)的影响, 年龄标签可能与面部图像不匹配. 即年龄标签是有噪声的.

实验中将 Wiki 数据集按照 4:1 的比例随机划分为训练集和测试集. 实验包括特征提取、噪声标签清洗、模

型训练和测试这 4个部分. 首先, 使用 ResNet50深度网络提取每张图像的特征. 然后, 使用 EIF和 PIC对训练集进

行数据过滤或标签校正. 最后, 使用过滤或校正后的数据集训练 CART和 GPR回归模型. 为了获取稳定的实验结

果, 标签清洗以及训练和测试步骤重复 5轮. 每轮训练的时间不超过 10 min. 测试误差由平均绝对误差 (mean absolute

error, MAE)度量: 

MAE =
1
n

∑n

i=1
|m(xi)− yi| (19)

为了更充分地比较不同算法, 实验构造了 3个不同难度的测试集, 它们分别包含所有的测试集样本、不过滤

情况下 MAE 大于 5 和 10 的样本. 表 4 列出了 3 种测试集上的不同模型的 MAE 和配对 t 检验的 p 值. 结果表明,

与 NoF 相比, PIC 在所有情况下均能降低模型测试误差. t 检验的 p 值均小于 0.05, 说明与 NoF 和 EIF 相比, PIC

可以显著降低各种回归模型的测试误差.
 
 

表 4　年龄数据集测试误差比较
 

对比样本集 模型 样本量
测试误差

误差减小比例 (%)
配对t检验的p值

NoF EIF PIC PIC vs. NoF PIC vs. EIF

全部
CART 7 108 13.37 12.75 12.41 7.16 0.000 0.026
GPR 7 108 13.52 13.43 8.79 35.01 0.000 0.000

NoF
MAE>5

CART 4 992 18.01 14.48 13.89 22.85 0.000 0.005
GPR 5 851 15.83 14.74 9.63 39.15 0.000 0.000

MAE>10
CART 3 508 22.46 16.21 15.36 31.59 0.000 0.000
GPR 4 270 18.90 17.41 10.71 43.33 0.000 0.000

注: 测试误差的加粗数字表示最小值, t检验的加粗数字表示p值小于0.05, NoF表示未对训练集做处理
 

表 5列出了一些图像与原始标签不匹配的示例. 左侧部分表示原始标签比图像表观的年龄偏大, 右侧部分表

示原始标签比图像表观的年龄偏小. 这些图像按照差值升序排序. PIC对列出的每张图像给出一个校正后的标签.

相比于原始标签, PIC校正后的标签更符合表观年龄.
 
 

表 5　校正的年龄标签噪声
 

No. 图像 原始标签 校正标签 偏差 No. 图像 原始标签 校正标签 偏差

1 61 54.64 ↑ 6 27 35.41 ↓

2 67 59.74 ↑ 7 18 26.96 ↓

3 76 68.57 ↑ 8 17 26.02 ↓

4 61 52.91 ↑ 9 24 33.19 ↓

5 67 55.8 ↑ 10 23 33.06 ↓

 

 4.2.2    视线估计

根据人眼的注视方向可以判断一个人的心理是否健康. 使用人工智能技术预测人眼的视线为心理学研究提供

1556  软件学报  2026年第 37卷第 4期



了高效的途径, 引起了计算机视觉领域研究人员的极大关注. MPIIGaze数据集是视线估计任务中被广泛使用的数

据集之一. 它包含了从 15名受试者在数月内的日常生活中收集的 213 659张照片. 每幅图像的视线标签由偏航角

和俯仰角共同组成一个平面单位向量. 然而, 由于个体差异和环境条件等因素, 可能存在标注信息与实际注视方向

无法准确匹配的情况.
实验在MPIIGaze数据集的一个预处理后的子集上进行 (数据集下载链接: https://phi-ai.buaa.edu.cn/Gazehub/

3D-dataset/), 子集共包含 45 000张图像及其视线标签. 实验将 PIC算法集成到最先进的视线估计方法 L2CS-Net [28]

中. 主要步骤是将所提出的标签校正方法置于全连接层之前. 利用主成分分析法对提取的图像特征进行适当降维

处理, 确保累计贡献率达 85%以上. 实验使用 15折交叉验证方法评估预测结果, 每次将 1名受试者的样本集作为

测试集, 其余 14 名受试者的样本集作为训练集并做标签校正. 表 6 列出了使用 MAE 计算的测试误差. 从表 6 可

见, 集成了 PIC算法的 L2CS-Net的测试误差最低. 这表明所提方法适用于带有噪声标签的真实图像数据, 可以减

小先进深度学习模型的测试误差.
 
 

表 6　MPIIGaze数据集测试误差比较
 

方法 测试误差 (°)

CA-Net[29] 4.1

AGE-Net[30] 4.09

L2CS-Net[28] 3.92
PIC+L2CS-Net 3.84

 

总的来说, PIC 算法可以有效地识别和校正年龄估计和视线估计数据集中的标签噪声, 从而提高数据质量和

模型的泛化能力.

 5   总　结

当前普遍采用的标签噪声过滤策略在处理数值型标签噪声时可能存在过度过滤或分布偏差等问题, 导致模型

难以充分捕捉数据真实分布特征. 针对这一现状, 本文提出一种渐进式区间校正 (PIC)算法. 该算法以标签估计值

为中心, 构造一系列由大到小的区间, 分批校正不在预估区间内的大噪声标签. 模拟噪声实验和真实数据实验表

明, 所提 PIC算法在不同的噪声水平和噪声分布下均能保持鲁棒性, 具备较强的实际应用价值.
尽管所提标签校正方法在性能上有一定的优势, 然而标签校正效果依赖于校正标签和后验分布估计的准确

性. 后续拟分析预估标签的可靠性或稳定性, 以获得更鲁棒的标签校正结果. 任何校正方法都无法绝对避免引入新

的错误标签, 如何度量并有效控制标签校正风险是下一步需要考虑的问题. 此外可以根据实际的标签风险将标签

校正与标签过滤策略有机结合, 进一步完善数值型标签噪声的处理方案.
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